Именно это явление используется в асинхронном двигателе. Только вместо вращающегося постоянного магнита в нем применяются несколько неподвижных электромагнитов, которые включаются, выключаются и меняют свою полярность в определенной последовательности. Поясним сказанное следующим примером.

Предположим, что I, II, III и IV — это четыре полюса двух электромагнитов, между которыми помещена металлическая стрелка. Под действием магнитного поля она намагничивается и становится вдоль линий магнитного поля электромагнитов, выходящих, как известно, из их северного полюса и входящих в южный. Все четыре полюса расположены по окружности на одном расстоянии друг от друга. Сперва ток подводится к II и III. Стрелка остается неподвижной по средней оси магнитных силовых линий. Затем подводится ток ко второму электромагниту. При этом одноименные полюса будут находиться рядом. Теперь средняя направляющая силовых линий магнитов пройдет от середины расстояния между I и II к середине между III и IV, и стрелка повернется на 45 градусов. Отключим первый электромагнит и оставим активными только полюса II и IV. Силовые линии будут направлены от III к IV, вследствие чего стрелка повернется еще на 45 градусов. Снова включим первый электромагнит, но поменяем при этом движение тока, так что полярность первого магнита изменится — стрелка повернется еще на 45 градусов. После отключения второго электромагнита стрелка переместится еще на 45 градусов, то есть совершит полуоборот. Легко понять, как заставить ее совершить вторую половину круга.

Описанное нами устройство в основных чертах соответствует двигателю Бейли, изобретенному в 1879 году. Бейли устроил два электромагнита с четырьмя крестообразно расположенными полюсами, которые он мог намагничивать с помощью выключателя. Над полюсами он установил медный кружок, подвешенный на острие. Изменяя полярности магнита, включая и выключая их, он заставил кружок вращаться точно так же, как это происходило в опыте Арго. Идея подобного двигателя чрезвычайно интересна, так как в отличие от двигателей постоянного тока или синхронных электромоторов, здесь не надо подводить ток к ротору. Однако в той форме, в которой его создал Бейли, асинхронный двигатель еще не мог иметь применения: переключение электромагнитов в нем происходило под действием сложного коллектора, и, кроме того, он имел очень низкий КПД. Но до того чтобы этот тип электромотора получил право на жизнь, оставался только шаг, и он был сделан после появления техники многофазных токов. Собственно, многофазные токи и получили применение, прежде всего благодаря электродвигателям. Чтобы понять, что такое, к примеру, двухфазный ток, представим себе два независимых друг от друга проводника, в которых протекают два совершенно одинаковых переменных тока. Единственная разница между ними заключается в том, что они не одновременно достигают своих максимумов. Про такие токи говорят, что они сдвинуты друг относительно друга по фазе, а если эти токи подводятся к одному электроприбору, говорят, что тот питается двухфазным током. Соответственно, может быть трехфазный ток (если питание прибора происходит от трех одинаковых токов, сдвинутых друг относительно друга по фазе), четырехфазный ток и т.д. Долгое время в технике использовался только обычный переменный ток (который по аналогии с многофазными токами стали называть однофазным). Но потом оказалось, что многофазные токи в некоторых случаях гораздо удобнее однофазного.

В 1888 г. итальянский физик Феррарис и югославский изобретатель Тесла (работавший в США) открыли явление вращающегося электромагнитного поля. Сущность его заключалась в следующем. Возьмем две катушки, состоящие из одинакового числа витков изолированного провода, и разместим их взаимно перпендикулярно так, чтобы одна катушка входила в другую. Теперь представим, что катушку 1 обтекает ток i1 а катушку 2 — ток i2, причем i1 опережает i2 по фазе на четверть периода. Это, как мы уже говорили, означает, что ток i1, достигает положительного максимума в тот момент, когда сила тока i2 равна нулю. Если мы мысленно разрежем катушки пополам горизонтальной плоскостью и будем смотреть на них сверху, то увидим сечения четырех сторон обеих катушек. Поместим между ними магнитную стрелку и будем наблюдать за ее движением. Катушки, через которые протекает переменный ток, как известно, являются электромагнитами. Их магнитное поле будет взаимодействовать со стрелкой, поворачивая ее. Рассмотрим теперь положение магнитной стрелки, ось которой совпадает с вертикальной осью катушек в различные моменты времени. В начальный момент времени (t=0) ток в первой катушке равен нулю, а во второй проходит через отрицательный максимум (направление тока будем обозначать так, как это делается в электротехнике — точкой и крестиком; крестик означает, что ток направляется от наблюдателя за плоскость чертежа, а точка — что ток направляется к наблюдателю). В момент t1 токи i1 и i2 равны друг другу, но один имеет положительное направление, а другой — отрицательное. В момент t2 величина тока i2, нисходит до нуля, а ток i1 достигает максимума. Стрелка при этом повернется еще на 1/8 оборота. Прослеживая подобным образом развитие процесса, мы заметим, что по окончании периода изменений одного из токов магнитная стрелка завершит полный оборот вокруг оси. Дальше процесс повторяется. Следовательно, при помощи двух катушек, питаемых двумя токами, сдвинутыми друг относительно друга по фазе на четверть периода, можно получить тот же эффект перемены магнитных полюсов, которого добился в своем двигателе Бейли, но здесь это получается намного проще, без всякого коммутатора и без использования скользящих контактов, поскольку перемагничиванием управляет сам ток. Описанный эффект получил в электротехнике название равномерно вращающегося магнитного поля. На его основе Тесла сконструировал первый в истории двухфазный асинхронный двигатель. Он вообще был первым, кто стал экспериментировать с многофазными токами и успешно разрешил проблему генерирования таких токов.

Поскольку получить двухфазный ток из однофазного было непросто, Тесла построил специальный генератор, который сразу давал два тока с разностью фаз в 90 градусов (то есть с отставанием на четверть периода). В этом генераторе между полюсами магнита вращались две взаимно перпендикулярные катушки. В то время, когда витки одной катушки находились под полюсами и индуцирующийся в них ток был максимальным, витки другой катушки находились между полюсами (на нейтральной линии) и электродвижущая сила в них была равна нулю. Следовательно, два тока, генерируемые в этих катушках, были тоже сдвинуты по фазе относительно друг друга на четверть периода. Аналогичным способом можно было получить трехфазный ток (используя три катушки под углом 60 градусов друг к другу), но Тесла считал наиболее экономичной двухфазную систему. В самом деле, многофазные системы тока требуют большого количества проводов. Если двигатель, работающий на обычном переменном (однофазном) токе, требует всего двух подводящих проводов, то работающий на двухфазном — уже четырех, на трехфазном — шести и т.д. Концы каждой катушки были выведены на кольца, расположенные на валу генератора. Ротор двигателя тоже имел обмотку в виде двух расположенных под прямым углом друг к другу замкнутых на себя (то есть не имеющих никакой связи с внешней электрической цепью) катушек.

Изобретение Теслы знаменовало собой начало новой эры в электротехнике и вызвало к себе живейший интерес во всем мире. Уже в июне 1888 году фирма «Вестингауз Электрик Компани» купила у него за миллион долларов все патенты на двухфазную систему и предложила организовать на своих заводах выпуск асинхронных двигателей. Эти двигатели поступили в продажу в следующем году. Они были гораздо лучше и надежнее всех существовавших до этого моделей, но не получили широкого распространения, так как оказались весьма неудачно сконструированы. Обмотка статора в них выполнялась в виде катушек, насаженных на выступающие полюса. Неудачной была и конструкция ротора в виде барабана с двумя взаимно перпендикулярными, замкнутыми на себя катушками. Все это заметно снижало качество двигателя как в момент пуска, так и в рабочем режиме.