Механические свойства Т. т. — основа их инженерного применения как конструкционных материалов. В частности, знание связи деформаций и напряжений позволяет решать конкретные практические задачи о распределении напряжений и деформаций в Т. т. различной формы (балки, пластины, оболочки и т. п.) при разнообразных нагрузках — изгибе, кручении (см. Сопротивление материалов).

  Движение частиц в Т. т. Фононы. Исследование теплового движения частиц в конденсированных средах приводит к понятию фононов. Если N — число ячеек кристалла, а n — число атомов (ионов) в элементарной ячейке, то 3Nn — полное степеней свободы число атомов кристалла, совершающих колебательное движение вблизи положений равновесия. Колебательный характер их движения сохраняется вплоть до температуры плавления Тпл. При Т = Тпл средняя амплитуда колебания атома меньше межатомного расстояния. Плавление обусловлено тем, что термодинамический потенциал жидкости при Т > Тпл меньше термодинамического потенциала Т. т. В первом (гармония.) приближении систему с 3Nn колебательными степенями свободы можно рассматривать как совокупность 3Nn независимых осцилляторов, каждый из которых соответствует отдельному нормальному колебанию.

  В кристалле с нарушениями периодичности (дефектами) среди нормальных колебаний имеются особые, в которых участвуют не все атомы кристалла, а только локализованные вблизи дефекта (например, чужеродного атома). Такие колебания называются локальными. Хотя их число невелико, они в ряде случаев определяют некоторые физические свойства (оптические свойства, особенности Мёссбауэра эффекта и др.). Вблизи поверхности в Т. т. могут распространяться локальные поверхностные волны, амплитуда которых экспоненциально уменьшается при удалении от поверхности (Рэлея волны). Подобные волны могут распространяться также и внутри кристалла вдоль плоских дефектов (например, границ кристаллических зёрен) и вдоль дислокаций.

  Нормальное колебание — волна смещений атомов из положения равновесия. Существует 3n типов нормальных колебаний (для простых решёток n = 1). Каждая волна характеризуется волновым вектором k и частотой w. Разным типам нормальных колебаний соответствуют различные зависимости: ws (k)(s = 1, 2,..., 3n), называемые законом дисперсии. Периодичность в расположении атомов приводит к тому, что все величины, зависящие от k, в кристалле оказываются также периодическими функциями. Например, ws (k + 2pb) = ws (k), где b — произвольный вектор обратной решётки.

  Зная силы взаимодействия между структурными частицами кристалла, можно рассчитать законы дисперсии. Существуют и экспериментальные методы их определения. Наиболее результативный из них — неупругое рассеяние медленных нейтронов в кристаллах. Некоторые выводы о законе дисперсии можно сделать, исходя из общих положений: среди нормальных колебаний должны быть такие, которые при больших длинах волн (по сравнению с межатомными расстояниями) соответствуют обычным звуковым волнам в кристалле. Таких волн три (для упругоизотропного тела — две волны поперечные и одна продольная), причём для всех трёх частота w — однородная функция 1-го порядка от компонент вектора k, обращающаяся в нуль при k = 0, то есть для трёх из 3n типов нормальных колебаний закон дисперсии при малых значениях волнового вектора имеет вид:

ws= csk  (s = 1, 2, 3), где cs— скорость звука в кристалле, зависящая от направления распространения звука. Эти три типа нормальных колебаний называются акустическими, при их возбуждении атомы одной ячейки колеблются как целое. Остальные 3n — 3 типов колебаний называются оптическими (впервые наблюдались по резонансному поглощению света). Частота w оптического колебания при k ® 0 стремится к конечному пределу. При этом атомы элементарной ячейки колеблются друг относительно друга, а центр тяжести ячейки покоится. Колебание каждого типа имеет макс. частоту wsмакс; это значит. что существует максимальная частота колебаний атомов в кристалле wмакс » с/а » 1012—1013сек–1. Знание закона дисперсии позволяет определить плотность состояний n(w). Число колебательных состояний в интервале частот (w, w + Dw) равно n(w) Dw. При w ® 0 n(w) ~ w2, а при w ® wмакс n(w) »

Большая Советская Энциклопедия (ТВ) - i-images-136431853.png
. Плотность состояний играет определяющую роль в термодинамических равновесных свойствах Т. т.

  Каждой волне с волновым вектором k и частотой со можно сопоставить квазичастицу с квазиимпульсом

Большая Советская Энциклопедия (ТВ) - i-images-170521144.png
 и энергией
Большая Советская Энциклопедия (ТВ) - i-images-161237723.png
 (см. Корпускулярно-волновой дуализм). Квазичастица, соответствующая волне нормальных колебаний, называется фононом. Квазиимпульс фонона во многом схож с импульсом свободной частицы. Скорость фонона uф — групповая скорость волны:

Большая Советская Энциклопедия (ТВ) - i-images-121478297.png
.

  Распределение фононов по энергиям в состоянии термодинамического равновесия описывается функцией Планка:

 

Большая Советская Энциклопедия (ТВ) - i-images-173200697.png
,

где

Большая Советская Энциклопедия (ТВ) - i-images-159457859.png
, — среднее число фононов сорта s (s = 1, 2..., 3n) с квазиимпульсом р. Функцию Планка можно рассматривать как функцию распределения идеального газа фононов, подчиняющихся статистике Бозе — Эйнштейна (см. Статистическая физика). Химический потенциал фононов равен нулю, что указывает на зависимость числа фононов от температуры. При высоких температурах число фононов растет с температурой линейно, а при низких — пропорционально T3, что отражает уменьшение амплитуды тепловых колебаний атомов с уменьшением температуры. В действительности газ фононов не является идеальным, так как фононы взаимодействуют друг с другом (ангарионизм колебаний); чем выше температура, тем это взаимодействие существеннее. Взаимодействие фононов описывается в теории введением для них длины свободного пробега, которая возрастает при понижении температуры. Фононы взаимодействуют не только друг с другом, но и с др. квазичастицами, а также со всеми дефектами кристалла (в частности, рассеиваются границами Т. т.).

  В аморфных телах тепловое движение частиц также носит колебательный характер. Однако фононы удаётся ввести только для низкочастотных акустических колебаний, когда на длине волны расположено много атомов, колеблющихся синфазно, и их взаимное расположение не слишком существенно. Максимальные частоты колебаний в аморфных телах мало отличаются от максимальных частот в кристаллах, так как определяются силами взаимодействия между ближайшими атомами. В результате этого, а также наличия ближнего порядка в аморфных телах плотность колебательных состояний близка к плотности колебательных состояний кристаллов.

  Диффузия атомов. В процессе колебания кинетическая энергия частицы в результате флуктуаций может превысить глубину потенциальной ямы, в которой она движется. Это означает, что частица способна «оторваться» от своего положения равновесия. Обычно вероятность W такого процесса при комнатной температуре мала:

 

Большая Советская Энциклопедия (ТВ) - i-images-137827423.png
.

Здесь W ~ Wмакс » 1012—1013сек–1, а величина u порядка энергии связи, рассчитанной на одну частицу. Поэтому все процессы в Т. т., сопровождающиеся переносом вещества (диффузия, самодиффузия и т. д.), идут сравнительно медленно. Только вблизи температуры плавления скорость этих процессов возрастает. Коэффициент диффузии, определяющий поток частиц по известному градиенту их концентрации, пропорционален W и существенно зависит от состояния кристаллической решётки. Пластическая деформация обычно «разрыхляет» кристалл, снижает потенциальные барьеры, разделяющие равновесные положения атомов, и поэтому увеличивает вероятность их «перескоков».