На основе всех этих представлений была сформулирована голографическая теория памяти. Согласно этой теории, никакая новая информация не может быть записана отдельно и ради нее самой. Эта информация взаимодействует и интерферирует с прошлым опытом субъекта, уже имеющимся в памяти. Этот прошлый опыт и составляет ту фотопластинку, на которую проецируется новая информация, причем происходит это одновременно во всех отделах мозга. В этом участвует, с одной стороны, активирующая ретикулярная формация, а с другой — кора головного мозга (после восприятия объекта). В зависимости от того, какие именно рецепторы доставляют информацию, в соответствующем отделе коры след памяти будет закреплен более специфичным образом (подобно тому как в голограмме какие-то участки изображения оказываются более яркими).

Итак, согласно голографической теории, когда человек ест яблоко, у него не только возникают зрительные, тактильные, обонятельные и вкусовые воспоминания, связанные с этим плодом, но также записываются сиюминутные впечатления о том, насколько данное яблоко кисло, как оно пахнет и что побудило его съесть. Благодаря этому каждый раз, когда на «мозговую голограмму» воздействует все новая и новая информация, связанная с изменениями в окружающем мире, происходит полная перестройка всей памяти; таким образом, картины мира в памяти непрерывно меняются.

Надо сказать, что техника в этой области достигла уже «грани фантастики». Исследователь из Калифорнийского технологического института Д. Псалтис разработал световой нейрокомпьютер, основанный на принципах голографии. Его «мозг» состоит пока всего лишь из тысячи «нейронов», представляющих собой оптические транзисторы и голографические пластинки, на которые записываются «воспоминания». Хотя число «нейронов» и невелико, этот компьютер уже может распознавать лицо человека по одним только глазам. В настоящее время Псалтис предполагает разработать сеть, включающую миллион нейронов благодаря светопреломляющему голографическому кристаллу размерами в 1 см3. В таком кристалле смогут налаживаться триллион световых связей и записываться нестираемые голограммы.

Физическая природа следов памяти

Синаптическая гипотеза. По мнению Хебба (Hebb, 1974), различия между кратковременной и долговременной памятью обусловлены главным образом различиями в структурах нервных сетей.

Сенсорная и кратковременная память, согласно гипотезе Хебба, обусловлена повторной циркуляцией (реверберацией) сигналов по многочисленным нервным путям, образующим замкнутые цепи. Поскольку сигналы при этом постоянно возвращаются к одним и тем же пунктам, возбуждение нейронных контуров может некоторое время поддерживаться, и одновременно может происходить посылка импульсов к другим центрам или по двигательным путям (рис. 8.16).

Что такое психология - img_135.png

Рис. 8.16. Схема, иллюстрирующая синаптическую теорию памяти. Информация, поступающая от рецепторов, может более или менее прямым путем направляться к центрам, ответственным за немедленное принятие решения, либо передаваться к двигательным центрам по путям A, L, M и N или же X, M и N. Однако одновременно эта информация может циркулировать по кругам, в которых, например, структура A вызывает возбуждение B, а та в свою очередь — опять возбуждение A и т. д. (либо по аналогичному кругу из структур X или Y). От того, как долго будет сохраняться возбуждение в путях I или II, а также от уровня активации организма зависит, перейдет ли след из кратковременной памяти в долговременную.

Что касается долговременной памяти, то она обусловлена, по мнению Хебба, длительным изменением синаптических связей, возникающим в результате повторной циркуляции импульсов. Благодаря этому создается все более и более прочный след, лежащий в основе памяти. Однако для того, чтобы этот след мог закрепиться, соответствующие контуры должны некоторое время оставаться неактивными. Этот период, длящийся от 15 минут до часа, называют периодом консолидации, и в это время происходит закрепление новых знаний или навыков. Именно поэтому после сотрясения мозга человек не может вспомнить о тех событиях, которые произошли непосредственно перед травмой, а остальные воспоминания нарушаются тем меньше, чем они дальше во времени от момента травмы.

Биохимические гипотезы. Известно, что видовая генетическая память записана на молекулах ДНК (дезоксирибонуклеиновой кислоты). ДНК содержится в ядрах всех клеток тела и представляет собой набор генов. На основе информации, содержащейся в ДНК, образуется другое вещество — РНК (рибонуклеиновая кислота), которая управляет функциями клетки, определяя синтез специфических белков. Белки играют первостепенную роль как в построении тканей, так и в различных функциях организма (см. приложение А).

Исследование химических изменений. Естественным образом возник вопрос: не может ли РНК — вещество, столь близкое к ДНК, — быть тем ключевым элементом, от которого зависит образование белков, специфических для разных видов научения.

На этот вопрос в 50-х годах пытался ответить пионер биохимических исследований в области памяти — шведский ученый Хиден (Hydén, 1969). Для этого он вырабатывал у крыс и мышей различные навыки, при которых изменялось их обычное поведение. Например, он заставлял животное получать пишу, балансируя на проволоке или действуя с помощью не той лапки, которой оно пользуется обычно. Хиден обнаружил, что после такого изменения поведенческих реакций не только увеличивалось общее количество РНК в мозгу, но и отмечались также сдвиги в ее качественном составе. Значит, при научении действительно происходят изменения на уровне молекул, как количественные, так и качественные. Хиден даже выделил особую молекулу, которую он назвал S100 и которая, по его мнению, как раз и была «молекулой памяти», ответственной за освоение новых навыков. Но хотя эти результаты и были многократно воспроизведены, они не дали ответа на вопрос о том, действительно ли новые молекулы специфически связаны именно с научением или же все эти количественные и качественные изменения просто сопровождают активацию мозга.

Изучение действия химических ингибиторов памяти. Медикам хорошо известно, что антибиотики подавляют синтез белков микроорганизмами. Это обусловлено ингибирующим действием антибиотиков на образование РНК. Аналогично действует и рибонуклеаза — фермент, разрушающий РНК и препятствующий ее образованию.

Поэтому интересно было проверить, нельзя ли, вводя такого рода ингибиторы в мозг, уничтожить какие-либо приобретенные реакции или помешать формированию новых.

Подобные исследования предпринимались многими учеными. Некоторые из них (например, Агранофф) проверили эту гипотезу на рыбках, которые были обучены избегать одного из отсеков аквариума. Джон (John, 1967) вводил рибонуклеазу в мозг кошки, у которой была выработана зрительная дифференцировка. Флекснер (Flexner, 1967) вводил антибиотик в мозг мыши, обученной избегать одну из ветвей Т-образного лабиринта. Результаты всех этих опытов были примерно одинаковыми. Введение подобных веществ в мозг после обучения действительно приводило к «стиранию» следов памяти, и животное должно было обучаться заново. В то же время такие вещества не влияли ни на кратковременную память, если вводились сразу же после обучения, ни на долговременную, если их вводили спустя длительное время после выработки навыка. Значит, стиратели следов, несомненно, действуют во время периода консолидации, о котором мы говорили выше. Однако достаточно ли этого, чтобы можно было говорить о молекулярном кодировании, которое будто бы и подавляется подобными веществами?

Эксперименты с «переносом молекул памяти». Увлечение идеями молекулярного кодирования памяти подтолкнуло некоторых ученых к попыткам проверить, нельзя ли осуществить биохимическую передачу каких-то навыков от одних животных другим. В 60-х годах Мак-Коннел и его сотрудники одними из первых проделали подобные опыты на планариях. Планарии — маленькие плоские черви, о которых мы уже говорили в первой главе, — это одни из самых простых животных, у которых имеется подобие мозга.