и что в пределах трех стандартных отклонений умещается почти вся популяция — 99,73 %.

Что такое психология - img_297.png

Учитывая, что распределение частот фона контрольной группы довольно близко к нормальному, можно полагать, что 68 % членов всей популяции, из которой взята выборка, тоже будет получать сходные результаты, т. е. попадать примерно в 13–19 мишеней из 25. Распределение результатов остальных членов популяции должно выглядеть следующим образом:

Что такое психология - img_298.png

Гипотетическая популяция, из которой взята контрольная группа (фон)

Что касается результатов той же группы после воздействия изучаемого фактора, то стандартное отклонение для них оказалось равным 4,25 (пораженных мишеней). Значит, можно предположить, что 68 % результатов будут располагаться именно в этом диапазоне отклонений от средней, составляющей 16 мишеней, т. е. в пределах от 11,75 (16 — 4,25) до 20,25 (16 + 4,25), или, округляя, 12–20 мишеней из 25. Видно, что здесь разброс результатов больше, чем в фоне. Эту разницу в разбросе между двумя выборками для контрольной группы можно графически представить следующим образом:

Что такое психология - img_299.png

Что такое психология - img_300.png

Поскольку стандартное отклонение всегда соответствует одному и тому же проценту результатов, укладывающихся в его пределах вокруг средней, можно утверждать, что при любой форме кривой нормального распределения та доля ее площади, которая ограничена (с обеих сторон) стандартным отклонением, всегда одинакова и соответствует одной и той же доле всей популяции. Это можно проверить на тех наших выборках, для которых распределение близко к нормальному, — на данных о фоне для контрольной и опытной групп.

Итак, ознакомившись с описательной статистикой, мы узнали, как можно представить графически и оценить количественно степень разброса данных в том или ином распределении. Тем самым мы смогли понять, чем различаются в нашем опыте распределения для контрольной группы до и после воздействия. Однако можно ли о чем-то судить по этой разнице — отражает ли она действительность или же это просто артефакт, связанный со слишком малым объемом выборки? Тот же вопрос (только еще острее) встаёт и в отношении экспериментальной группы, подвергнутой воздействию независимой переменной. В этой группе стандартное отклонение для фона и после воздействия тоже различается примерно на 1 (3,14 и 4,04 соответственно). Однако здесь особенно велика разница между средними — 15,2 и 11,3. На основании чего можно было бы утверждать, что эта разность средних действительно достоверна, т. е. достаточно велика, чтобы можно было с уверенностью объяснить ее влиянием независимой переменной, а не простой случайностью? В какой степени можно опираться на эти результаты и распространять их на всю популяцию, из которой взята выборка, т. е. утверждать, что потребление марихуаны и в самом деле обычно ведёт к нарушению глазодвигательной координации?

На все эти вопросы и пытается дать ответ индуктивная статистика.

Индуктивная статистика

Задачи индуктивной статистики заключаются в том, чтобы определять, насколько вероятно, что две выборки принадлежат к одной популяции.

Давайте наложим друг на друга, с одной стороны, две кривые — до и после воздействия — для контрольной группы и, с другой стороны, две аналогичные кривые для опытной группы. При этом масштаб кривых должен быть одинаковым.

Что такое психология - img_301.png

Видно, что в контрольной группе разница между средними обоих распределений невелика, и поэтому можно думать, что обе выборки принадлежат к одной и той же популяции. Напротив, в опытной группе большая разность между средними позволяет предположить, что распределения для фона и воздействия относятся к двум различным популяциям, разница между которыми обусловлена тем, что на одну из них повлияла независимая переменная.

Проверка гипотез

Как уже говорилось, задача индуктивной статистики — определять, достаточно ли велика разность между средними двух распределений для того, чтобы можно было объяснить ее действием независимой переменной, а не случайностью, связанной с малым объемом выборки (как, по-видимому, обстоит дело в случае с опытной группой нашего эксперимента).

При этом возможны две гипотезы:

1) нулевая гипотеза (H0), согласно которой разница между распределениями недостоверна; предполагается, что различие недостаточно значительно, и поэтому распределения относятся к одной и той же популяции, а независимая переменная не оказывает никакого влияния;

2) альтернативная гипотеза (H1), какой является рабочая гипотеза нашего исследования. В соответствии с этой гипотезой различия между обоими распределениями достаточно значимы и обусловлены влиянием независимой переменной.

Основной принцип метода проверки гипотез состоит в том, что выдвигается нулевая гипотеза H0, с тем чтобы попытаться опровергнуть ее и тем самым подтвердить альтернативную гипотезу H1. Действительно, если результаты статистического теста, используемого для анализа разницы между средними, окажутся таковы, что позволят отбросить H0, это будет означать, что верна H1, т. е. выдвинутая рабочая гипотеза подтверждается.

В гуманитарных науках принято считать, что нулевую гипотезу можно отвергнуть в пользу альтернативной гипотезы, если по результатам статистического теста вероятность случайного возникновения найденного различия не превышает 5 из 100 [215]. Если же этот уровень достоверности не достигается, считают, что разница вполне может быть случайной и поэтому нельзя отбросить нулевую гипотезу.

Для того чтобы судить о том, какова вероятность ошибиться, принимая или отвергая нулевую гипотезу, применяют статистические методы, соответствующие особенностям выборки.

Так, для количественных данных (см. дополнение Б.1) при распределениях, близких к нормальным, используют параметрические методы, основанные на таких показателях, как средняя и стандартное отклонение. В частности, для определения достоверности разницы средних для двух выборок применяют метод Стьюдента, а для того чтобы судить о различиях между тремя или большим числом выборок, — тест F, или дисперсионный анализ.

Если же мы имеем дело с неколичественными данными или выборки слишком малы для уверенности в том, что популяции, из которых они взяты, подчиняются нормальному распределению, тогда используют непараметрические методы — критерий χ2 (хи-квадрат) для качественных данных и критерии знаков, рангов, Манна — Уитни, Вилкоксона и др. для порядковых данных.

Кроме того, выбор статистического метода зависит от того, являются ли те выборки, средние которых сравниваются, независимыми (т. е., например, взятыми из двух разных групп испытуемых) или зависимыми (т. е. отражающими результаты одной и той же группы испытуемых до и после воздействия или после двух различных воздействий).

Дополнение Б.3. Уровни достоверности (значимости)

Тот или иной вывод с некоторой вероятностью может оказаться ошибочным, причем эта вероятность тем меньше, чем больше имеется данных для обоснования этого вывода. Таким образом, чем больше получено результатов, тем в большей степени по различиям между двумя выборками можно судить о том, что действительно имеет место в той популяции, из которой взяты эти выборки.