Резюме

Существуют три главных раздела статистики: описательная статистика, индуктивная статистика и корреляционный анализ.

I. Описательная статистика

1. Задачи описательной статистики — классификация данных, построение распределения их частот, выявление центральных тенденций этого распределения и оценка разброса данных относительно средних.

2. Для классификации данных сначала располагают их в возрастающем порядке. Далее их разбивают на классы по величине, интервалы между которыми определяются в зависимости от того, что именно исследователь хочет выявить в данном распределении.

3. К наиболее часто используемым параметрам, с помощью которых можно описать распределение, относятся, с одной стороны, такие величины, как мода, медиана и средняя арифметическая, а с другой — показатели разброса, такие как варианса (дисперсия) и стандартное отклонение.

4. Мода соответствует значению, которое встречается чаще других или находится в середине класса, обладающего наибольшей частотой.

Медиана соответствует значению центрального данного, которое может быть получено после того, как все данные будут расположены в возрастающем порядке.

Средняя арифметическая равна частному от деления суммы всех данных на их число.

Распределение считается нормальным, если кривая распределения имеет колоколообразный вид, а все показатели центральной тенденции совпадают, что свидетельствует о симметричности распределения.

5. Диапазон распределения (размах вариаций) равен разности между наибольшим и наименьшим значениями результатов.

6. Среднее отклонение — это более точный показатель разброса, чем диапазон распределения. Для расчета среднего отклонения вычисляют среднюю разность между всеми значениями данных и средней арифметической, или, упрощенно,

Среднее отклонение =

Что такое психология - img_349.png
.

7. Еще один показатель разброса, вычисляемый из среднего отклонения, — это варианса (дисперсия), равная среднему квадрату разностей между значениями всех данных и средней:

Варианса =

Что такое психология - img_350.png
.

8. Наиболее употребительным показателем разброса служит стандартное отклонение, равное квадратному корню из вариансы. Таким образом, это квадратный корень из суммы квадратов всех отклонений от средней:

Стандартное отклонение =

Что такое психология - img_351.png
или
Что такое психология - img_352.png
.

9. Важное свойство стандартного отклонения заключается в том, что независимо от его абсолютной величины в нормальном распределении оно всегда соответствует одинаковому проценту данных, располагающихся по обе стороны от средней: 68 % результатов располагаются в пределах одного стандартного отклонения в обе стороны от средней, 95 % — в пределах двух стандартных отклонений и 99,7 % — в пределах трех стандартных отклонений.

10. С помощью перечисленных выше показателей можно осуществить оценку различий между двумя или несколькими распределениями, позволяющую проверить, насколько эти различия могут быть экстраполированы на популяцию, из которой взяты выборки. Для этого применяют методы индуктивной статистики.

II. Индуктивная статистика

1. Задача индуктивной статистики заключается в том, чтобы оценить значимость тех различий, которые могут быть между двумя распределениями, с целью выяснить, можно ли распространить найденную закономерность на всю популяцию, из которой были взяты выборки.

2. Для того чтобы определить, достоверны ли различия между распределениями, следует выдвинуть гипотезу, которую нужно будет затем проверить статистическими методами. Нулевой гипотезой называют предположение, согласно которому различие между распределениями недостоверно, тогда как альтернативная гипотеза утверждает противоположное.

3. В том случае, если данных достаточно, если эти данные количественные и подчиняются нормальному распределению, для проверки гипотез используют параметрические критерии. Если же данных мало либо они являются порядковыми или качественными (см. дополнение Б.1), используют непараметрические критерии.

4. Из параметрических критериев наиболее эффективен и чаще всего используется критерий t Стьюдента. Этот критерий позволяет сравнить средние и стандартные отклонения для двух распределений. В случае если эти показатели принадлежат независимым выборкам, используют формулу

t =

Что такое психология - img_353.png
.

Для сопряженных выборок используют иную формулу:

t =

Что такое психология - img_354.png
.

5. Если необходимо сравнить три или большее число распределений, используют иной параметрический метод — дисперсионный анализ. При этом с помощью метода Шеффе можно выявить пары выборок, различия между которыми достоверны либо недостоверны.

6. Критерий χ2 (хи-квадрат) — это непараметрический критерий, позволяющий проверить, являются ли две переменные независимыми друг от друга. По этому методу сравнивают, как распределяются эмпирические частоты в зависимости от критериев для каждой переменной, с тем, как они распределились бы теоретически, если бы переменные были независимыми. Далее с помощью таблицы, в которую сводятся все частоты, вычисляют критерий χ2. Для этого сначала находят разницу между каждой эмпирической (Э) и соответствующей теоретической (Т) частотой, а затем сумму этих разностей:

χ2 = Σ

Что такое психология - img_355.png
.

7. Критерий знаков (биномиальный тест) — еще один непараметрический метод, позволяющий легко определить, оказала ли независимая переменная существенное влияние по сравнению с исходным уровнем (фоном). Для этого сначала подсчитывают число «ухудшений» (-) или число «улучшений» (+), а затем сравнивают одно из этих двух чисел с тем, что могло бы получиться в результате чистой случайности (1 шанс из 2, или n/2). Для этого применяют формулу

Z =

Что такое психология - img_356.png
.

8. Существуют и другие непараметрические тесты, которые приходится использовать для проверки гипотез тогда, когда нельзя применить параметрические критерии. К этим методам, в частности, относится критерий рангов, позволяющий определить, случайна или нет очередность событий в той или иной последовательности, а также критерий U и критерий T. Последние два критерия используют в случае порядковых переменных соответственно для независимых и зависимых выборок.

9. Какой бы критерий ни использовался, его вычисленное значение следует сравнить с табличным для уровня значимости 0,05 с учетом числа степеней свободы. Если при этом вычисленный результат окажется выше, нулевая гипотеза может быть отвергнута и можно, следовательно, утверждать, что разница достоверна.

III. Корреляционный анализ

1. Задача корреляционного анализа заключается в том, чтобы установить возможную связь между двумя показателями, полученными на одной и той же или на двух различных выборках. При этом устанавливается, приводит ли увеличение какого-либо показателя к увеличению или уменьшению другого показателя.

2. Коэффициент корреляции колеблется в пределах от +1, что соответствует полной положительной корреляции, до -1 в случае полной отрицательной корреляции. Если этот коэффициент равен 0, то никакой корреляции между двумя рядами данных нет.