Энциклопедия «Техника» (с иллюстрациями) - i_163.jpg

Схема устройства счётчика Гейгера – Мюллера:

1 – герметически запаянная стеклянная трубка; 2 – катод (тонкий слой меди на цилиндре из нержавеющей стали); 3 – вывод катода; 4 – анод (тонкая нить)

ГЕЙТС (gates) Уильям Генри iii (р. 1955), американский предприниматель и разработчик в области электронно-вычислительной техники. Уже в средней школе проявил незаурядные математические способности. Будучи учеником старших классов, создал свою первую компанию, занимавшуюся продажей устройств определения интенсивности дорожного движения. В основе устройства использовался микропроцессор 8008 фирмы «Интел». Программу для устройства написал сам Гейтс. В 1975 г., бросив Гарвардский университет, Гейтс совместно с П. Алленом основал компанию «Майкрософт» («Microsoft»). Первой задачей фирмы стало создание программ для первого коммерческого микрокомпьютера – «Altair». В 1980 г. «Майкрософт» разработала дисковую операционную систему MS-DOS (Microsoft Disk Operation System) для первого персонального компьютера фирмы «ИБМ» – IBM PC, ставшую к сер. 1980-х гг. основной операционной системой на американском рынке микрокомпьютеров. В 1990 г. компания представила операционную систему Windows-3.0, в которой команды с помощью клавиатуры компьютера были заменены на пиктограммы («иконки»), выбираемые с помощью «мыши», что значительно облегчило пользование компьютером. Затем фирмой «Майкрософт» были созданы усовершенствованные варианты операционных систем Windows-95, а далее приспособленных для работы с Интернетом Windows-98, Windows-2000, Windows XP. К кон. 1990-х гг. ок. 90 % всех персональных компьютеров в мире были оснащены программным обеспечением «Майкрософт». Автор книг «Дорога в будущее» (1995), «Бизнес со скоростью мысли» (2001).

Энциклопедия «Техника» (с иллюстрациями) - i_164.jpg

У.Гейтс

ГЕЛИКÓПТЕР, принятое за рубежом название вертолёта.

ГЕЛИОКОНЦЕНТРÁТОР, устройство для повышения плотности (концентрации) принимаемой лучистой энергии Солнца. Состоит из системы отражателей: плоских или параболоидных (параболоцилиндрических) зеркал различных форм и размеров; реже используются прозрачные оптические фокусирующие линзы. Отражатели укрепляются на жёстком каркасе; сооружают также полужёсткие и надувные гелиоконцентраторы с покрытием из металлизированных плёнок. Гелиоконцентратор входит в состав различных гелиоустановок, в которых солнечная энергия преобразуется и используется в виде тепла или электроэнергии в солнечных печах, при гелиосварке, стерилизации, в ряде других технологических процессов, в сочетании с солнечным термоэлектрогенератором и т. п. Гелиоконцентратор может повышать плотность энергии солнечной радиации в несколько тысяч раз, доводя её до 35·103 кВт/мІ, что только в два раза меньше плотности лучистой энергии на поверхности Солнца (74·103 кВт/мІ). Для такой концентрации энергии строят гелиоустановки, зеркальная система которых (параболоидного и других типов) может иметь диаметр до 10 м.

ГЕЛИОУСТАНÓВКА, устройство, служащее для улавливания лучистой энергии Солнца и преобразования её в тепловую или электрическую, что позволяет использовать солнечную энергию в практических целях. Простейшей низкотемпературной гелиоустановкой является т. н. «горячий ящик», работающий при естественной плотности солнечной радиации, без её концентрации, который может выполнять функции сушилки, водо – и воздухонагревателя, простейшего опреснителя солёной воды и т. д. Более сложные установки имеют гелиоконцентраторы, они применяются обычно для получения высоких температур при гелиосварке, а также в различных производственных процессах: приготовления продуктов питания (солнечная кухня), стерилизации, нагрева воды и воздуха, опреснения морской воды в промышленных масштабах и т. п.

Энциклопедия «Техника» (с иллюстрациями) - i_165.jpg

Гелиоустановка с параболоидным гелиоконцентратором

ГЕЛИОЭЛЕКТРИ́ЧЕСКАЯ СТÁНЦИЯ, см. Солнечная электростанция.

ГЕЛИОЭНЕРГÉТИКА, отрасль энергетики, в которой для получения электрической и тепловой энергии используется лучистая энергия Солнца. Энергия солнечного излучения относится к возобновляемым природным видам энергии наряду с гидравлической и геотермальной; её общее количество, получаемое поверхностью Земли за год, составляет ок. 1018 кВт·ч, что более чем в 20 000 раз превышает современный уровень мирового энергопотребления. Наиболее целесообразно и перспективно использование энергии Солнца для энергоснабжения потребителей, находящихся в южных труднодоступных, удалённых районах, не нуждающихся в больших мощностях (для водоснабжения пресной водой, получения бытового тепла и т. п.), а также в космосе. Лучистая энергия Солнца используется человечеством с древних времён (напр., сушка пищевых продуктов). Со временем был разработан ряд устройств для нагрева воды, обогрева теплиц и т. п. Затем появились различные установки для отопления и охлаждения зданий, опреснения солёной воды, энергообеспечения устройств систем связи, ирригации, космических аппаратов и т. д. К 2000 г. доля используемой солнечной энергии в общем объёме энергопотребления составила 2–3 %. Исследования в области использования солнечной энергии ведутся во многих странах мира, особенно в регионах с интенсивным солнечным излучением – в странах Средиземноморья, юга Европы, на Ближнем Востоке, в Африке, странах Средней Азии и др. Разработки проводятся на уровне национальных программ, что связано во многом с постепенным истощением традиционных источников энергии и повышением цен на органическое топливо. Строительство гелиоустановок обычно рассматривается как дополнение к традиционным источникам энергии. Недостатком всех гелиоустановок является зависимость их работы от состояния атмосферы, а также от сезонных и суточных колебаний солнечной радиации, что требует включения в их состав аккумулирующих устройств.

ГЕНЕРÁТОР ЭЛЕКТРИ́ЧЕСКИЙ, устройство, преобразующее механическую, тепловую, электромагнитную, световую и другие виды энергии в электрическую. К таким устройствам относятся турбо – и гидрогенераторы, термогенераторы, магнитогидродинамические генераторы, термоэмиссионные преобразователи, солнечные батареи, атомные и изотопные батареи. Все эти устройства считаются физическими источниками тока, в отличие от химических источников, вырабатывающих электрическую энергию в результате окислительно-восстановительных реакций (гальванические элементы, электрические аккумуляторы, топливные элементы).

ГЕНЕРÁТОР ЭЛЕКТРИ́ЧЕСКИХ КОЛЕБÁНИЙ, устройство для преобразования различных видов электрической энергии в энергию электрических (электромагнитных) колебаний. По форме электрических колебаний различают: генераторы синусоидальных (гармонических) колебаний, импульсные генераторы, генераторы колебаний специальной формы. Генерирование электрических колебаний осуществляется обычно путём преобразования энергии источников постоянного тока с помощью электронных приборов. В зависимости от типа применяемых приборов различают генераторы на электронных лампах, полупроводниковых приборах (транзисторные, диодные генераторы), магнетронных приборах (магнетроны, стабилитроны), газоразрядных приборах (тиратронные генераторы), а также квантовые генераторы (мазеры, лазеры).

Необходимыми элементами генераторов электрических колебаний являются: источник энергии, пассивные цепи, в которых возбуждаются и поддерживаются колебания, и активный элемент, в котором энергия источника питания преобразуется в энергию генерируемых колебаний. В качестве активных элементов часто используются электронные приборы в сочетании с цепями обратной связи.