Когда соперничают две исследовательские программы, их первые "идеальные" модели, как правило, имеют дело с различными аспектами данной области явлений (так, первая модель ньютоновской полукорпускулярной оптики описывала рефракцию световых лучей, первая модель волновой оптики Гюйгенса-интерференцию). С развитием соперничающих исследовательских программ они постепенно начинают вторгаться на чужую территорию, и тогда возникает ситуация, при которой n-й вариант первой программы вступает в кричащее противоречие с т-м вариантом второй программы. (219) Ставится (неоднократно) некий эксперимент, и один из этих вариантов терпит поражение, а другой празднует победу. Но борьба на этом не кончается: всякая исследовательская программа на своем веку знает несколько таких поражений. Чтобы вернуть утраченные позиции, нужно только сформулировать п+1-й (или n+k-й) вариант, который смог бы увеличить эмпирическое содержание, часть которого должна пройти успешную проверку.
Если длительные усилия ни к чему не приводят, и программа не может вернуть себе прежние позиции, борьба затихает, а исходный эксперимент задним числом признается "решающим". Но если потерпевшая поражение программа еще молода и способна быстро развиваться, если ее "протонаучные" достижения вызывают достаточное доверие, предполагаемые "решающие эксперименты" один за другим оттесняются в сторону, уступая ее рывкам вперед.* Даже если проигравшая какое-то сражение программа находится в зрелом возрасте, привыкнув к признанию и "утомившись" от него, приближается к "естественной точке насыщения", (220) она все же может долго сопротивляться и предлагать остроумные инновации, увеличивающие эмпирическое содержание, даже если при этом они не увенчиваются эмпирическим успехом. Программу, которую поддерживают талантливые ученые, обладающие живым и творческим воображением, победить чрезвычайно трудно. Со своей стороны, упрямые защитники потерпевшей поражение программы могут выдвигать объяснения ad hoc экспериментов и злонамеренные "редукции" ad hoc победившей программы с тем, чтобы разбить ее. Но такие попытки следует отвергнуть как ненаучные.
Теперь понятно, почему решающие эксперименты признаются таковыми лишь десятилетия спустя. Эллиптические орбиты Кеплера были признаны решающими доказательствами правоты Ньютона и неправоты Декарта лишь почти через сто лет после того, как об этом заявил Ньютон; аномальное поведение перигелия Меркурия в течение десятков лет было известно как один из многих пока еще нерешенных вопросов, стоявших перед программой Ньютона; но то, что теория Эйнштейна объяснила этот факт лучше, превратило заурядную аномалию в блестящее "опровержение" исследовательской программы Ньютона. 221-222 Юнг утверждал, что его эксперимент с двойной щелью 1802 г. был решающим экспериментом в споре корпускулярной и волновой оптическими программами; но это заявление было признано гораздо позже, когда разработанная Френелем волновая программа оказалась значительно "прогрессивней" корпускулярной и стало ясно, что ньютонианцы не могут тягаться с ее эвристической мощью. Таким образом, аномалия, известная в течение десятков лет, обрела почетный статус опровержения, а эксперимент - титул "решающего" лишь после долгого периода неравномерного развития обеих программ, соперничавших между собой. Броуновское движение почти сто лет находилось посредине поля сражения, прежде чем стало ясно, что программа феноменологических исследований разрушается этим фактом и счастье войны поворачивается лицом к атомистам. "Опровержение" Майкельсоном серии Бальмера игнорировалось целым поколением физиков до тех пор, пока исследовательская программа Бора своим триумфом не поддержала его.
Наверное, стоит более подробно рассмотреть примеры экспериментов, "решающий" характер которых стал очевидным только задним числом. Сначала рассмотрим знаменитый эксперимент Майкельсона-Морли 1887 года, который якобы фальсифицировал теорию эфира и "привел к теории относительности, а затем - эксперименты Луммера-Принсгейма, которые якобы фальсифицировали классическую теорию излучения и "привели к квантовой теории". (223) И, наконец, обсудим эксперимент, который многими физиками считался опровержением законов сохранения, а на деле стал блестящим подтверждением последних.
(г) Эксперимент Майкельсона-Морли
Майкельсон впервые придумал свой эксперимент для проверки противоречивших друг другу теорий Френеля и Стокса о влиянии движения земли на эфир (224), во время своего посещения института Гельмгольца в Берлине в 1881 г. Согласно теории Френеля, Земля движется сквозь эфир, остающийся неподвижным, однако частично увлекаемый движением Земли; из теории Френеля следовало, что скорость эфира по отношению к Земле имеет положительное значение (другими словами, существует "эфирный ветер"). По теории Стокса, Земля полностью переносит " вместе с собой содержащийся внутри нее эфир и непосредственно на поверхности Земли скорость эфира не отличается от скорости Земли (иначе говоря, относительная скорость эфира равна нулю, и значит, нет "эфирного ветра"). Вначале Стоке считал, что две эти теории эквивалентны по отношению к имевшимся тогда наблюдениям: например, при помощи соответствующих вспомогательных гипотез обе теории объясняли аберрацию света. Но Майкельсон утверждал, что его эксперимент 1881 г. был решающим в споре между этими теориями и разрешил этот спор в пользу Стокса. (225) Скорость Земли по отношению к эфиру могла определяться величинами намного меньшими, чем это следовало из теории Френеля. Из этого Майкельсон заключил, что "результат, предсказываемый гипотезой неподвижного эфира, не наблюдается, откуда с необходимостью следует вывод о том, что данная гипотеза [о неподвижном эфире] ошибочна". (226 ) Как это часто бывает, Майкельсон был экспериментатором, которому пришлось выслушивать урок теоретика. Ведущий физик-теоретик того времени Г. Лоренц показал, что Майкельсон ошибочно истолковал свои наблюдения, которые "на самом деле" не противоречили гипотезе неподвижного эфира; позднее Майкельсон назвал анализ Лоренса "весьма поучительным". (227 )Кроме того, Лоренц показал, что вычисления Майкельсона должны быть неточными; теория Френеля предсказывала только половину тех результатов, которые были получены в опыте американского физика. Из этого Лоренц заключил, что эксперимент Майкельсона не опроверг теорию Френеля и, тем более, не доказал справедливость теории Стокса. Лоренц настаивал на том, что теория Стокса противоречива: она исходит из двух исключающих друг друга требований - неподвижности эфира на поверхности Земли по отношению к последней и, вместе с тем, потенциала относительной скорости; ясно, что эти требования несовместимы.
Однако, если бы даже Майкельсон действительно опроверг теорию неподвижного эфира, сама программа, включающая эту теорию, оставалась бы неприкосновенной; не так уж трудно было бы изобрести какие-то иные варианты эфирной программы, которые предсказывали бы очень малые значения величины скорости эфирного ветра. Лоренц немедленно предложил такую гипотезу. Она была проверяемой, и Лоренц благородно представил ее на суд эксперимента. (228) Майкельсон вместе с Морли приняли вызов.
Эксперимент опять показал, что относительная скорость Земли по отношению к эфиру, по-видимому, равна нулю, что противоречило теории Лоренца. Но к этому времени Майкельсон стал более осторожным в интерпретации своих данных; он даже допускал вероятность того, что солнечная система в целом могла бы двигаться в направлении, противоположном движению Земли; поэтому он решил повторить эксперимент несколько раз с интервалом в три месяца, чтобы "избежать всякой неопределенности". (229) В другой статье Майкельсон уже ничего не говорит о "выводах, следующих с необходимостью" и "ошибочности гипотезы". Его высказывания теперь более осмотрительны: "Из предшествующих рассуждений, как можно с некоторой определенностью судить, следует, что если бы какое-либо относительное движение между землей и светоносным эфиром имело место, его численное значение было бы настолько малым, чтобы отвергнуть френелевское объяснение аберрации". (230)