В качестве примера междисциплинарных исследований, возникших в последние десятилетия, можно указать сначала на кибернетику, а затем синергетику. Известно, что процессы и принципы управления изучались в разных науках и до появления кибернетики, но именно она впервые четко сформулировала их, придала недостающую общность и разработала единую терминологию и язык, что значительно облегчило общение и взаимопонимание между учеными разных специальностей. Аналогично этому проблемы самоорганизации исследовались на материале биологических, экономических и социально-гуманитарных наук, но только синергетика выдвинула новую общую концепцию самоорганизации и тем самым сформулировала ее общие принципы, которые используются в разных областях исследования. Важная заслуга синергетики состоит в том, что она впервые показала, что при наличии определенных предпосылок и условий самоорганизация может начаться уже в простейших неорганических системах открытого типа.

310

Возникновение подобных междисциплинарных исследований свидетельствует о наличии в науке тенденции к интеграции научного знания, значительный импульс которой придало развернувшееся после Второй мировой войны "системное движение". Эта тенденция преодолевает недостатки противоположной тенденции к дифференциации знания, направленной на обособленное изучение отдельных явлений, процессов и областей реального мира. Разумеется, тщательный их анализ играет значительную роль в прогрессе науки, так как позволяет глубже и точнее исследовать их. Тем не менее, чтобы отразить единство и целостность мира и отдельных его систем, необходимо интегрировать научное знание в рамках соответствующих концептуальных систем.

Методы познания могут классифицироваться по разным основаниям деления. По у р о в ню познания различают эмпирические и теоретические методы, по точности предсказаний - детерминистские и стохастические (вероятностно-статистические), по функциям, которые они осуществляют в познании, - методы систематизации, объяснения и предсказания, по конкретным областям исследования - физические, биологические, социальные и т.д.

Все эти методы анализируются в рамках особой философской дисциплины, которую называют методологией науки. Нередко, однако, она понимается либо слишком широко, либо очень узко. Иногда методология отождествляется с теорией научного познания и даже с философией вообще, так как именно последняя служит мировоззренческой ее основой. При слишком узком взгляде методология рассматривается как теоретическая основа некоторых частных и специальных приемов и средств анализа. Иногда, например, говорят о методологии эксперимента, ценообразования, расчетов на устойчивость и т.п., тогда как точнее и корректнее во всех этих и подобных случаях говорить о методике соответствующих действий.

Главной целью методологии науки является изучение тех методов, средств и приемов, с помощью которых приобретается и обосновывается новое знание в науке. Но кроме этой основной задачи методология изучает также структуру научного знания вообще, место и роль в нем различных форм познания и методы анализа и построения различных систем научного знания.

311

Отсюда становится ясным, что в методологии науки целесообразно различать динамический и статический аспекты рассмотрения. Если динамика анализирует проблемы генезиса, роста и развития научного знания, то статика имеет дело с готовым, имеющимся знанием. Соответственно этому, если в первом случае говорят о методологии научного исследования, ориентированной на поиск нового знания, то во втором - о методологии структуры существующего знания. Этот второй аспект методологического анализа смыкается с логикой науки, вследствие чего ее иногда отождествляют с методологией. Однако логика науки занимается исследованием научного языка с помощью понятий и принципов современной семиотики вообще и логической семантики в особенности. Еще больше общего у методологии с гносеологией, или теорией познания вообще и гносеологией научного познания в особенности. Некоторые авторы даже считают ее специальным разделом гносеологии. Конечно, все указанные разграничения имеют лишь относительный характер, ибо такую сложноорганизованную систему, как наука, нельзя понять, не изучив все ее части во взаимосвязи друг с другом.

3. Критерии и нормы научного познания

В отличие от здравого смысла наука руководствуется определенными стандартами или нормами исследования, которые обеспечивают интерсубъективность полученных при этом результатов. Например, данные наблюдений или экспериментов должны быть воспроизводимы любым ученым соответствующей области знания, а это означает, что они не должны зависеть от субъекта, его желаний и намерений. Вот почему они называются интерсубъективными. История науки знает немало случаев добросовестного заблуждения ученых, когда они сообщали о полученных результатах, не говоря уже о преднамеренной их фальсификации. Именно поэтому в науке устанавливаются определенные критерии и нормы исследования, которыми должен руководствоваться любой ученый. Эти критерии служат прежде всего обеспечению объективности результатов научного исследования, исключающих всякую предвзятость, предубеждение, произвол и логическую противоречивость выводов.

312

Важнейшим критерием не только для научного, но и для обыденного знания является критерий непротиворечивости, или последовательность мышления, который обеспечивается соблюдением известных законов аристотелевской логики, и прежде всего закона недопущения противоречия.

Соблюдение критерия непротиворечивости обязательно не только для формальных и абстрактных наук, например математики и логики, но и для наук, опирающихся на опыт и факты. Такие науки часто называют эмпирическими, поскольку они развиваются и основываются на наблюдениях, экспериментах и практике, составляющих совместный опыт науки. К ним относится большая часть естественных и технических наук.

В отличие от них преобладающая часть экономических, социальных и гуманитарных наук опирается на факты, устанавливаемые в ходе наблюдения и практики, и поэтому их называют фактуальными. Поскольку те и другие науки опираются в конечном счете на опыт и практику и тем самым отличаются от абстрактных и формальных наук, то в дальнейшем для простоты изложения мы будем называть их эмпирическими.

Почему так важен критерий непротиворечивости для эмпирических и теоретических систем?

Из логики известно, что два противоречащих суждения не могут быть одновременно истинными, т.е. их конъюнкция дает ложное высказывание, а из него можно получить как истинное, так и ложное высказывание. Очевидно, что такая ситуация привела бы к разрушению всякого порядка и последовательности в наших рассуждениях. Чтобы исключить такую возможность, в логике и вводится закон, исключающий противоречия, или принцип непротиворечивости. С содержательной точки зрения противоречивость привела бы к полной бесплодности науки, ибо противоречивая система не дает никакой информации об изучаемом мире.

Поскольку все эмпирические теории дают нам конкретную информацию о реальном мире, постольку фундаментальным для них является критерий проверяемости. Этот критерий признают не только сторонники эмпиризма и наивного реализма, но и представители многих направлений философии науки, в частности такие влиятельные, как логические позитивисты и критические рационалисты. Все они также согласны в том, что критерий проверяемости нельзя понимать слишком упрощенно и требовать, чтобы каждое высказывание в теории или в науке в целом допускало непосредственную эмпирическую проверку. Однако когда заходит речь о том, какими специфическими способами достигается такая проверка, то мнения здесь расходятся. Если суммировать эти мнения, то можно выделить две основные группы.

313

Сторонники эмпиризма, к которым примыкают также логические позитивисты, считают, что гипотезы и теоретические системы эмпирических наук должны проверяться с помощью критерия подтверждения. Чем больше и разнообразнее будут факты, подтверждающие гипотезу, тем более правдоподобной, или вероятной, она может считаться. Нетрудно понять, однако, что будущие опыты и вновь открытые факты могут опровергнуть не только отдельную гипотезу, но и теоретическую систему, которая раньше представлялась достоверно истинной. Почти три столетия никто не сомневался в истинности законов и принципов классической механики Галилея - Ньютона, но в XX столетии появилась теория относительности Эйнштейна, которая указала на новые факты, исправившие прежние представления о пространстве, времени и гравитации. Несколько позднее возникшая квантовая механика открыла совершенно новые законы движения в мире мельчайших частиц материи. Этот исторический опыт развития науки учит, что не только к гипотезам, но и к теориям науки не следует подходить как к непреложным, абсолютно достоверным истинам. Поэтому и критерий подтверждения не следует рассматривать как абсолютный, так как рост и развитие научного познания происходит диалектически - от менее достоверных и неполных истин к истинам более достоверным и полным.