Деятельностная природа эмпирического исследования на уровне наблюдений наиболее отчётливо проявляется в ситуациях, когда наблюдение осуществляется в ходе реального эксперимента. По традиции эксперимент противопоставляется наблюдению вне эксперимента. Не отрицая специфики этих двух видов познавательной деятельности, мы хотели бы тем не менее обратить внимание на их общие родовые признаки.

Для этого целесообразно вначале более подробно рассмотреть, в чем заключается особенность экспериментального исследования как практической деятельности, структура которой реально выявляет те или иные интересующие исследователя связи и состояния действительности.

Предметная структура экспериментальной практики может быть рассмотрена в двух аспектах: во-первых, как взаимодействие объектов, протекающее по естественным законам, и, во-вторых, как искусственное, человеком организованное действие. В первом аспекте мы можем рассматривать взаимодействие объектов как некоторую совокупность связей и отношений действительности, где ни одна из этих связей актуально не выделена в качестве исследуемой. В принципе, объектом познания может служить любая из них. Лишь учёт второго аспекта позволяет выделить ту или иную связь по отношению к целям познания и тем самым зафиксировать её в качестве предмета исследования. Но тогда явно или неявно совокупность взаимодействующих в опыте объектов как бы организуется в системе определённой цепочки отношений: целый ряд их реальных связей оказывается несущественным, и функционально выделяется лишь некоторая группа отношений, характеризующих изучаемый «срез» действительности.

Проиллюстрируем это на простом примере. Допустим, что в рамках классической механики изучается движение относительно поверхности земли массивного тела небольших размеров, подвешенного на длинной нерастягивающейся нити. Если рассматривать такое движение только как взаимодействие природных объектов, то оно предстаёт в виде суммарного итога проявления самых различных законов. Здесь как бы «накладываются» друг на друга такие связи природы, как законы колебания, свободного падения, трения, аэродинамики (обтекание газом движущегося тела), законы движения в неинерциальной системе отсчёта (наличие сил Кориолиса вследствие вращения Земли) и т. д. Но как только описанное взаимодействие природных объектов начинает рассматриваться в качестве эксперимента по изучению, например, законов колебательного движения, то тем самым из природы вычленяется определённая группа свойств и отношений этих объектов.

Прежде всего взаимодействующие объекты – Земля, движущееся массивное тело и нить подвеса – рассматриваются как носители только определённых свойств, которые функционально, самим способом «включения» их в «экспериментальное взаимодействие», выделяются из всех других свойств. Нить и подвешенное на ней тело предстают как единый предмет – маятник. Земля фиксируется в данной экспериментальной ситуации 1) как тело отсчёта (для этого выделяется направление силы тяжести, которое задаёт линию равновесия маятника) и 2) как источник силы, приводящий в движение маятник. Последнее в свою очередь предполагает, что сила тяжести Земли должна рассматриваться лишь в определённом аспекте. А именно, поскольку, согласно цели эксперимента, движение маятника представляется как частный случай гармонического колебания, то тем самым учитывается лишь одна составляющая силы тяжести, которая возвращает маятник к положению равновесия. Другая же составляющая не принимается во внимание, поскольку она компенсируется силой натяжения нити.

Описанные свойства взаимодействующих объектов, выступая в акте экспериментальной деятельности на передний план, тем самым вводят строго определённую группу отношений, которая функционально вычленяется из всех других отношений и связей природного взаимодействия. По существу описанное движение подвешенного на нити массивного тела в поле тяжести Земли предстаёт как процесс периодического движения центра массы этого тела под действием квазиупругой силы, в качестве которой фигурирует одна из составляющих силы тяготения Земли. Эта «сетка отношений», выступающая на передний план в рассматриваемом взаимодействии природы, и есть та объектная структура практики, в рамках которой изучаются законы колебательного движения.

Допустим, однако, что то же самое движение в поле тяжести Земли тела, подвешенного на нити, выступает как эксперимент с маятником Фуко. В этом случае предметом изучения становится иная связь природы – законы движения в инерциальной системе. Но тогда требуется выделить совершенно иные свойства взаимодействующих фрагментов природы.

Фактически закреплённое на нити тело функционирует теперь только как движущаяся масса с фиксированным относительно Земли направлением движения. Строго говоря, при этом система «тело плюс нить в поле тяжести» уже не рассматривается как маятник (поскольку здесь оказывается несущественной с точки зрения изучаемой связи основная характеристика маятника – период его колебания). Далее, Земля, относительно которой рассматривается движение тела, теперь фиксируется по иным признакам. Из всего многообразия её свойств в рамках данного эксперимента оказываются существенными направление оси вращения Земли и величина угловой скорости вращения, задание которых позволяет определить кориолисовы силы. Силы же тяготения в принципе уже не играют существенной роли для целей экспериментального исследования кориолисовых сил. В результате выделяется новая «сетка отношений», которая характеризует изучаемый в рамках данного эксперимента срез действительности. На передний план выступает теперь движение тела с заданной скоростью вдоль радиуса равномерно вращающегося диска, роль которого играет плоскость, перпендикулярная оси вращения Земли и проходящая через ту точку, где в момент наблюдения находится рассматриваемое тело. Это и есть структура эксперимента с маятником Фуко, позволяющего изучать законы движения в неинерциальной (равномерно вращающейся) системе отсчёта.

Аналогичным образом в рамках анализируемого взаимодействия природы можно было бы выделить объектные структуры иного типа, если данное взаимодействие представить как разновидность экспериментальной практики по изучению, например, законов свободного падения или, допустим, законов аэродинамики (разумеется, отвлекаясь при этом от того, что в реальной экспериментальной деятельности такого рода опыты для данной цели не используются). Анализ таких абстрактных ситуаций хорошо иллюстрирует то обстоятельство, что реальное взаимодействие природы может быть представлено как своего рода «суперпозиция» различного типа «практических структур», число которых в принципе может быть неограниченным.

В системе научного эксперимента каждая из таких структур выделяется благодаря фиксации взаимодействующих объектов по строго определённым свойствам. Эта фиксация, конечно, не означает, что у объектов природы исчезают все другие свойства, кроме интересующих исследователя. В реальной практике необходимые свойства объектов выделяются самим характером оперирования с ними. Для этого объекты, приведённые во взаимодействие в ходе эксперимента, должны быть предварительно выверены практическим употреблением на предмет существования у них свойств, стабильно воспроизводящихся в условиях будущей экспериментальной ситуации. Так, нетрудно видеть, что эксперимент с колебанием маятника мог быть осуществлён лишь постольку, поскольку предшествующим развитием практики было строго выявлено, что, например, сила тяжести Земли в данном месте постоянна, что любое тело, имеющее точку подвеса, будет совершать колебания относительно положения равновесия и т. п. Важно подчеркнуть, что вычленение этих свойств стало возможным лишь благодаря соответствующему практическому функционированию рассматриваемых объектов. В частности, свойство Земли быть источником постоянной силы тяготения многократно использовалось в человеческой практике, например, при перемещении различных предметов, забивании свай с помощью падающего груза и т. п. Подобные операции позволили функционально выделить характеристическое свойство Земли «быть источником постоянной силы тяжести».