Сейчас во Всесоюзном геологическом институте ведутся исследования по созданию метода микробиологического поиска месторождений цветных металлов. Об окончательных результатах говорить рано, но нет сомнения, что пройдет какое-то время, и микробы-разведчики приведут человека к новым кладовым сокровищницы земных недр.
Однако роль помощников при поисках новых залежей ископаемых — это не единственная «должность», которую отводят микробам ученые, разрабатывающие проблемы геологической микробиологии.
Немалое значение приобретает деятельность микроорганизмов и в процессе самой эксплуатации месторождений. Во всяком случае, первые попытки в этом направлении уже сделаны.
Мы уже как-то говорили, что нет на земле такой среды, где бы не обитали микроорганизмы. Не представляет собою исключения и нефть. Существуют даже гипотезы, что сама нефть имеет биогенное происхождение, то есть является продуктом жизнедеятельности микроорганизмов. Гипотез таких ни много ни мало восемь, и все-таки среди них нет ни одной, которая была бы в достаточной степени обоснована фактическим материалом и выглядела достоверной. Однако несомненно, что в нефтяных месторождениях широко распространены бактерии, способные разрушать нефть с образованием газообразных продуктов.
В 1946 году американский микробиолог Зобелл взял патент на способ, увеличивающий добычу нефти с помощью особых культур бактерий. Лабораторные опыты привели его к заключению, что введение в нефтяную скважину этих микробов даст положительные результаты. Прежде всего выделение бактериями углекислоты расширит поры известковых пород, в которых залегает нефть, и тем самым облегчит ее добычу: увеличению подвижности нефти должны способствовать растворившиеся в ней газы. А самое главное — деятельность бактерий увеличит содержание низкомолекулярных фракций, более простых и легких. Все, казалось бы, хорошо. Лабораторные опыты проведены, соответствующие культуры выделены и размножены в достаточных количествах, патент взят. Однако полевые опыты опровергли все выводы ученого. От деятельности микробов в пробирке до их поведения в природе оказалась дистанция огромного размера.
Не принесли успеха и попытки других исследователей, пробовавших идти тем же путем. Так, нереализованным остался и патент американца Сандерсона (1953 год), изменившего набор бактериальных культур, вводимых в нефтяной пласт.
Однако поиски продолжались.
Советские микробиологи обратили внимание на то, что разложение тормозится из-за нехватки в нефти некоторых продуктов, обеспечивающих активное развитие микробов.
Член-корреспондент Академии наук СССР Сергей Иванович Кузнецов решил в ходе эксперимента подкормить микробов отходами пищевой промышленности.
Полевые опыты проводились на нефтяном промысле в Серноводске. В пласт на глубину около 1000 метров закачали 54 кубических метра микробной культуры и скважину законсервировали на шесть месяцев. Предполагалось, что за это время бактерии, размножившись и использовав введенную вместе с ними подкормку из пищевых отходов, приступят к разрушению серноводской нефти, имеющей, кстати, очень большую вязкость.
И действительно, когда скважину вскрыли, то оказалось, что газа стало больше, давление в пласте увеличилось, повысилась и добыча нефти.
Бактериологический анализ пластовой воды показал, что в ней присутствуют бактерии, которые были введены в начале опыта. И они работали! Содержание азота стало 35 процентов по сравнению с исходными 20 процентами, количество углекислоты и пропана повысилось, а метана стало меньше. Однако общая вязкость нефти возросла.
Да, бактерии работали, но они делали не то, чего от них ожидал человек: вместо разрушения тяжелых фракций нефти микробы ускоряли распад ее легких компонентов.
И все-таки это был успех! Исследования продолжаются. И хотя привлечение микробов к эксплуатации нефтяных залежей — вопрос будущего, нет сомнения, что оно не за горами.
У него пышное имя, напоминающее титул средневекового гранда и указывающее на родство с «весьма знатными семействами».
Зовут его Тиобациллус феррооксиданс. «Тиобациллус» говорит о принадлежности к серобактериям, как мы видели, весьма активно изменяющим соединения серы. «Феррооксиданс» означает «окисляющий железо» и свидетельствует о способности получать энергию, как автотрофная железобактерия.
Для науки он родился сравнительно недавно, в 1947 году. И микробиологи потом долго удивлялись, как могло случиться, что эта бактерия раньше не попала под их микроскопы и не знала своего места в соответствующих каталогах. Удивлялись потому, что теперь этот микроорганизм обнаруживали во все новых и новых местах — в США и Дании, в Шотландии и Мексике, у нас в Донбассе и на Урале.
Широкое распространение Тиобациллус феррооксиданс в угле и сульфидных рудах послужило основанием для изучения его окислительной деятельности непосредственно в месторождениях. И вот к чему это привело.
Мексика. Медные рудники, месторождение Кананеа. Здесь за несколько лет около шахт скопились огромные отвалы пустой отработанной породы, 40 миллионов тонн. Однако, строго говоря, считать породу в отвалах совершенно пустой неверно, так как в ней содержится 0,2 процента меди.
Это мало, очень мало. А способы извлечения меди слишком дороги, чтобы стоило возиться со столь нищей рудой. И все-таки 40 миллионов тонн даже такой руды — это 80 тысяч тонн одного из самых дорогих металлов. Решено было пропустить через отвалы воду. Прошедшая сквозь породу вода собиралась в подземные резервуары, а там путем простой обменной реакции с железом из нее выделялась чистая медь. Так ежемесячно стали получать дополнительно 650 тонн меди.
В чем же суть этого вроде бы несложного приема? Что происходит в воде, когда она идет через руду? Ведь медь там находится в соединениях нерастворимых?
Здесь на благо человека работает Тиобациллус феррооксиданс, поселившийся в нищей руде. Именно он переводит нерастворимые соединения меди в медный купорос, который легко уносится водой. Теперь уже каждый литр воды несет 3 грамма меди. А дальше элементарная школьная реакция медного купороса с железом — и на специальных пластинах осаждается чистейшая медь.
Так можно добывать медь не только из бедных металлом отвалов отработанных руд, но и прямо в самих Шахтах. В США в одном из рудников штата Аризона за полгода было извлечено 29 процентов всех запасов меди, причем ее содержание в растворе достигало почти 10 граммов на каждый литр.
Работает Тиобациллус феррооксиданс и у нас на Урале. Здесь при Дегтярском руднике существует целый завод «Гидромедь». В нем рудничные воды оставляют медь, собранную трудами бактерий. Такая же установка создана на Красногвардейском месторождении. Заинтересовался новым методом извлечения меди и Кировоградский медеплавильный комбинат, в огромных отвалах которого содержатся десятки тысяч тонн меди. Кстати, при добыче руды всегда бывают потери, величина которых колеблется от 5 до 20 процентов, в зависимости от системы разработки. По обследованиям Аглицкого и Дынькиной, запасы меди в оставленной руде измеряются тысячами тонн. И единственный способ их заполучить — привлечь к работе Тиобациллус феррооксиданс, первенца биометаллургии. У биологического способа извлечения металлов из руд перед всеми остальными системами разработки есть всегда то преимущество, что микробы не нуждаются в специальном оборудовании. Необходимы лишь резервуары для сбора готовой продукции. Производственные процессы микробы переносят под землю, в природные условия, освобождая человека от строительства шахт или удаления большой массы верхних пластов земли, как это делается при открытых разработках залежей.