Другое замечание относится уже к практике: ко вхождению в матрицу перехода. Если начальное состояние системы определено с погрешностью, большей чем допустимая для вхождения в матрицу перехода из реального начального состояния в избранное конечное, то управление на основе самого по себе безошибочного алгоритма метода динамического программирования приведёт к совсем иным результатам, а не расчётному оптимальному режиму системы. Грубо говоря, не следует принимать за выход из помещения на высоком этаже открытое в нём окно.

 То есть методдинамического программирования необходимостью как определённости в выборе конечного состояния-процесса, так и необхо­димостью выявления истинного начального состояния, сам собой защи­щён от применения его для наукообразной имитации оптимизации управ­ления при отсутствии такового. Это отличает метод динамического программирования, в частности от аппарата линейного программирования, в который можно сгрузить экспромтные оценки “экспертами” весовых коэффициентов в критериях оптимизации Min (Z) либо Max (Z).

Эта сама собой защищенность от недобросовестного изпользования косвенно отражена и в литературе современной экономической науки: поскольку она не определилась с тем, что является вектором целей управления по отношению к производственно-потребительской системе госу­дарства, то не встречаются и публикации об изпользовании аппарата линейного программирования для оптимизации управления макроэко­но­мическими системами регионов и государств в целом на исторически длительных интервалах времени.

Примерами тому “Математическая экономика на персональном компьютере” под ред. М.Кубонива, в которой глава об управлении в экономике содержит изключительно макроэкономические интерпретации аппарата линейного программирования (прямо так и названа “Управление в экономике. Линейное программирование и его применение”), но ничего не говорит о векторе целей управления и средствах управления; в ранее цитированном учебнике Ю.П.Зайченко описание метода динамического программирования, так же построено на задачах иного характера.

Однако при мотивации отказа от макроэкономических интерпретаций метода динамического программирования авторы обычно ссылаются на так называемое в вычислительной математике «проклятие размерности», которое выражается в том, что рост размерности задачи N вызывает рост объёма вычислений, пропорциональный k, где показатель степени « » больше 1. Такой нелинейный рост объёма вычислений действительно делает многие работоспособные вычислительные алгоритмы никчемными в решении практических задач как из-за больших затрат машинного времени компьютеров, так и из-за накопления ошибок в приближенных вычислениях. Но это «проклятие размерности» относится не только к методу динамического программирования, но и к другим методам, которые, однако, встречаются и в их макроэкономических интерпретациях.

ВАЖНО ОБРАТИТЬ ВНИМАНИЕ И ПОНЯТЬ: Если в математике видеть науку об объективной общевселенской мере (через “ять”), а в её понятийном, терминологическом аппарате и символике видеть одно из предоставленных людям средств описания объективных частных процессов, выделяемых ими из некоторых объёмлющих процессов, то всякое описание метода динамического программирования есть краткое изложение всей ранее изложенной достаточно общей теории управления, включая и её мистико-религиозные аспекты; но — на языке математики.

Чтобы пояснить это, обратимся к рис. 9, памятуя о сделанном ранее замечании об определённости начального состояния с достаточной для вхождения в матрицы перехода точностью.

Краткий курс... - ris39.jpg

На нём показаны два объекта управления «А» и «Б» в начальном состоянии; три объективно возможных завершающих состояния (множество «5»); множества («1» — «4») возможных промежуточных состояний; и пути объективно возможных переходов из каждого состояния в иные.

Рис. 9 можно уподобить некоторому фрагменту общевселенской меры развития (многовариантного предопределения) — одной из составляющих в триединстве «материя-информация-мера».

Если принять такое уподобление рис. 9, то объективно возможен переход из любого начального состояния «0:1» или «0:2» в любое из завершающих состояний «5:1», «5:2», «5:3». Но эта объективная возможность может быть ограничена субъективными качествами управленцев, намеревающихся перевести объекты «А» и «Б» из начального состояния в одно из завершающих состояний.

Если дано Свыше Различение[44], то управленец «А» (или «Б») снимет с объективной меры “кальку”, на которой будет виден хотя бы один из множества возможных путей перевода объекта из начального состояния во множество завершающих. Если Различение не дано, утрачено или отвергнуто в погоне за вожделениями, или бездумной верой в какую-либо традицию, но не Богу по совести, то на “кальке” будут отсутствовать какие-то пути и состояния, но могут “появиться” объективно невозможные пути и состояния, объективно не существующие в истинной Богом данной мере. Кроме того, по субъективному произволу управленца выбирается и желанное определённое завершающее состояние из их множества. Соответственно следование отсебятине или ошибка в выборе предпочтительного завершающего состояния может завершиться катастрофой с необратимыми последствиями.

Но матрица возможных состояний, показанная на рис. 9, вероятностно предопределяет только частный процесс в некой взаимной вложенности процессов. По этой причине каждое из начальных состояний «0:1», «0:2» может принадлежать либо одному и тому же, либо различным объёмлющим процессам, в управленческом смысле иерархически высшим по отношению к разсматриваемому; то же касается и каждого из завершающих состояний «5:1», «5:2», «5:3» в паре «исходное — завершающее» состояния. Каждый из объёмлющих процессов обладает их собственными характеристиками и направленностью течения событий в нём.

Может оказаться, что цель «5:1» очень привлекательна, если смотреть на неё из множества начальных неудовлетворительных состояний. Но не изключено, что объёмлющий процесс, к которому завершающее состояние «5:1» принадлежит, как промежуточное состояние, в силу взаимной вложенности процессов, на одном из последующих шагов завершается полной и необратимой катастрофой. Например, цель «5:1» — не опоздать на “Титаник”, выходящий в свой первый рейс, ставший трагическим и последним... Чтобы не выбирать такую цель из множества объективно возможных, необходимо быть в ладу с иерархически наивысшим объёмлющим управлением, которое удержит частное ладное с ним управление от выбора такой цели, принадлежащей к обреченному на изчезновение процессу.

Но если рис. 9 — “калька” с объективной меры, то может статься, что какое-то завершающее состояние, являющееся вектором целей — отсебятина, выражающая желание “сесть на два поезда сразу”. Иными словами разные компоненты вектора целей принадлежат к двум или более взаимно изключающим друг друга иерархически высшим объёмлющим процессам протекающим одновременно.

Это один из случаев неопределённости и дефективности вектора целей, делающий метод динамического программирования неработоспособным, а реальный процесс “управления” неустойчивым, поскольку одна и та же “лодка” не может пристать и к правому, и к левому берегу одновременно, даже если привлекательные красоты на обоих берегах реки, при взгляде издали из-за поворота реки совмещаются, создавая видимость подходящего для пикника весьма уютного места. Чтобы не выбрать такого вектора целей, также необходимо, чтобы Свыше было дано Различение правого и левого “берегов”.

То есть алгоритму динамического программирования, даже если его можно запустить, сопутствует ещё одно внешнее обстоятельство, которое тоже очевидно, “само собой” разумеется, но в большинстве случаев игнорируется: завершающее частный оптимизируемый процесс состояние должно принадлежать объёмлющему процессу, обладающему заведомо приемлемыми собственными характеристиками течения событий в нём.