Диаметр валуна примерно равнялся 1,5 метра, а эта величина близка к 1,618 — золотому сечению. Глубина ямы, куда помещали валун, равнялась 15 см, но учитывая, что Кьельсон проводил этот замер рулеткой, и наверняка оценивал глубину в центре относительно краев «на глаз», в «Аненербе» предположили, что в действительности глубина ямы была равна 16,18 см — либо 10φ, либо 0,1φ!
Далее в «Аненербе» должны были обратить внимание на расстояние в 63 метра — от ямы до музыкантов. Здесь «φ» поначалу тоже не могли найти: 63 на 1,618 делилось с остатком. Однако с учетом ошибки при измерении, из-за неровностей поверхности, немецкие исследователи пришли к выводу, что в действительности расстояние должно равняться 63,1 метра или 39φ.
Угол в пять градусов между линиями, на которых стояли монахи, под «золотое сечение» никак не подходил, при попытке разделить 5 на 1,618 получилось 3,09. Потом наверняка кого-то из исследователей осенила догадка: пропорция «золотого сечения» известна с глубокой древности так же, как и известное число «пи» (3,14), являющееся отношением длины окружности к ее диаметру и обозначаемое греческой буквой π (пи).
После этого самого настоящего открытия все измерения Кьельсона сразу приобрели некую систему, в которой главную роль играли как произведение πφ, равное 5,08, так и каждая пропорция в отдельности!
Кьельсон мог своим угломером замерить угол в 5°, но 446 (четыре минуты 46 секунд угла), соответствующие 0,08, его угломер уловить не мог. Тоже могло произойти и при измерениях рулеткой — из-за неровности поверхности: 63 метра могли быть 62,8 метра (20π) или 63,1 метра (39φ) — об этом уже говорилось. Глубина ямы наверняка измерялась рулеткой в центре и ошибка вполне допустима: вместо 15 см глубина могла быть 16.2 см (0,1π или 10φ) — об этом тоже говорилось.
Расстояние от площадки с ямой до скалы составляло 100 метров. Здесь вероятность ошибки в замерах тоже имеется: либо 98,596 метра — 10π2, либо 100,48 метра — 20πφ, то в этом случае «золотое сечение» должно равняться 1,6. В варианте же «золотого сечения» 1,618 расстояние от площадки до скалы при 20πφ будет равно 101,61 метра.
Частоту колебаний швед никак не мог измерить, но шесть труб, 13 барабанов и хор из 200 человек должны были звучать оглушающе, тем более в горах. Играть и петь все-таки лучше, чем на себе тащить валуны диаметром полтора метра и примерным весом в четыре тонны на почти отвесную скалу высотой 400 метров. Диаметр валунов тоже был приближен как к числу «золотого сечения», так и к 0,5π. Масса валуна рассчитывалась автором по правильному гранитному шару диаметром 1,5 метра, и она сопоставима с взлетной массой легкого истребителя времен Второй мировой войны.
И уже теперь исследователи из «Аненербе» снова обратились к «4 минутам» Кьельсона: с учетом π и φ его «четыре минуты» на ручных или карманных часах могли быть несколько больше 240 секунд, и равняться 254,026 сек — 50πφ!
В варианте «φ = 1,6» время 50πφ будет составлять 251.2 секунды, т. е. еще более приближаться к «четырем минутам» Кьельсона.
Расстояние в 63 метра, от ямы до стоявших ближе всех музыкантов, тоже наверняка было не случайным. Ближе находиться могло быть опасно — отражавшаяся от камня часть звуковых колебаний могла оказывать на человеческий организм негативное, причем сильное, воздействие!
Вот так в «Аненербе» поняли загадку этого случая левитации: все параметры этого фантастического подъема тяжелого камня были близки к мировым константам «π» и «золотое сечение». Тут же в «Аненербе» предположили, что и звуковые частоты были кратны этим величинам и, без сомнения, постарались проверить это многочисленными опытами.
Удивительным подтверждением того, что при создании диска Белонце конструкторы «Аненербе» учитывали произведение констант πφ, служит упоминавшаяся ранее заметка из газеты «Секретные исследования», где говорилось о находке в Калининграде «диска Циммермана», диаметр которого «около 5 метров», а ведь величина πφ (5,08) как раз и является «около пяти метров»!
Однако диаметр калининградского диска мог быть и 4,854 метра, что равняется 3φ, а эта величина тоже близка к упомянутому «около 5 метров».
Поняв, что в параметрах конструкции летательного аппарата должны присутствовать константы π и φ, в «Аненербе» пришли к выводу, что его наиболее подходящей формой должен быть круг, он же диск, где π присутствует всегда, к тому же размеры диска должны быть кратны πφ, т. е. величине 5,08. После этого наступила очередь разработки двигателя.
При подъеме валуна в Тибете главную роль, в прямом смысле, играли трубы. Их рев был практически непрерывным, не случайно около каждой находилось по два трубача — они менялись, чтобы перевести дыхание. Рев труб происходил в диапазоне низких частот, т. е. в инфразвуковой (или близкой к ней) зоне. Скорее всего, инфразвуковые колебания, плавно нарастая в течение 50πφ (251 или 254) секунд, сначала заставляли камень колебаться, а затем в какой-то момент попадали в резонанс с его колебаниями — и это заставляло валун массой в четыре тонны подниматься практически вертикально на высоту 400 метров. Хор из 200 монахов, поющих, как сказано, в унисон, т. е. хором в один тембр, исполнял роль страховочной поддержки, удерживая валун в короткие моменты смены трубачей низкими частотами голосовых мелодий.
13 барабанов. Хотя они были трех разных размеров, вес каждого составлял не 150 кг, как сказано, а наверняка несколько больше. Кьельсон и здесь мог допустить погрешность, которая образовалась, скорее всего, из-за неточности весов, которые он явно нашел у монахов — вес каждого барабана должен был равняться 30πφ или 152, 4156 кг. Однако такую точность авиаинженер не мог получить на примитивных монастырских весах-коромыслах, да и гири наверняка были старые, побитые и потертые и, соответственно, несколько уменьшившиеся в массе за неизвестно сколько сотен лет, отсюда и погрешность в 2,4 кг при взвешивании. Но удивительно, что погрешность в 2,4156 кг равна… 1, 6104 % от 150 кг, т. е. в числовом значении почти соответствует «золотому сечению»!
Барабаны были подвешены и обращены звучащей частью к камню. Как барабанщики в них били: все одновременно или последовательно, создавая непрерывную звуковую цепь, неизвестно. Но в любом случае низкие, инфразвуковые, колебания 13-ти барабанов трех видов, 6-ти труб и хора в 200 человек заставляли валун все больше и больше колебаться как от непрерывных ударов или толчков. Мощность звуковых колебаний все более и более плавно нарастала, колебания валуна тоже, причем так, что он начинал раскачиваться в своей яме, и при этом между валуном и дном ямы начинал появляться просвет (зазор). И как только он появлялся, туда мгновенно проникали звуковые волны, после чего чашеобразная яма глубиной 16 см (0,1φ или 10φ) тут же начинала играть роль отражателя, фокусируя колебания на нижней части валуна. При этом мощность колебаний, попадавших на нижнюю часть камня, из-за фокусировки почти мгновенно возрастала в геометрической прогрессии, и возникал резонанс звуковых колебаний и колебаний валуна, в результате чего и начинался его подъем.
Не исключено, что при подъеме часть барабанов и труб продолжали излучать колебания на яму, другая же часть и весь хор посылали звуки на поднимающийся валун. Это могло делаться специально — необходимо было уравновесить тяжелый камень, который при подъеме мог отклониться от отвесной скалы в противоположную сторону под воздействием колебаний, отражаемых от ее вертикальной поверхности.
Когда же валун приближался к вершине, мощность отражаемых от скалы колебаний начинала падать, и камень отклонялся в сторону наименьшего сопротивления, точно попадая на вершину горы — вот и весь логический анализ звукового подъема валуна весом в ЧЕТЫРЕ ТОННЫ. Подробные технические расчеты, особенно частот инфра (возможно, ультра) звуковых резонансных колебаний пусть попробуют сделать соответствующие специалисты. Ничего особо сложного в этом для современной науки наверняка нет, если такие расчеты смогли сделать еще в 30-х годах прошлого века специалисты из организации СС «Аненербе» («Наследие предков»)…