В связи с этим было решено еще раз экспериментально проверить свойства изотопов 254102 и 256102 двумя методами. В одном из них свойства изотопов определяли по характеристикам альфа-частиц, в другом — по дочерним ядрам. Результаты экспериментов с изотопом 256102 оказались такими же, как раньше. Но в другой серии опытов экспериментаторы с удивлением обнаружили, что изотоп 254102 обладает свойствами, сильно отличающимися от указанных калифорнийской группой. Выяснилось, что этот изотоп живет не 3, а 65 секунд; энергия альфа-частиц, образующихся при распаде его ядер, составляет не 8,3, а 8,11 Мэв; и наконец, спонтанное деление он испытывает не в 30% случаев, а примерно в одном случае из 1800. А ведь эти результаты казались самыми достоверными!
Стало ясно, что необходимо повторить опыты по синтезу и изучению свойств других изотопов элемента № 102. Эти опыты и были поставлены в Дубне в 1965–1966 гг.
Здесь необходимо упомянуть о том, что за годы, прошедшие после первых работ по синтезу элемента № 102, ядерная физика ушла далеко вперед. Да и техника эксперимента совершенствовалась все эти годы. Поэтому тем, кто начинал исследования в 60-х годах, много было и понятнее, и доступнее, чем участникам работ 1956–1958 гг.
Сравнить данные, полученные в Дубне, с результатами первых синтезов вы можете, ознакомившись с приведенной здесь таблицей. (Желая подчеркнуть какое-то важное различие, иногда говорят, будто бы по примеру одесситов, «две большие разницы». В нашей таблице «больших разниц» уже не две, а четыре.) Сравнение данных показывает, что практически во всех ранних работах были допущены большие или меньшие ошибки.
Массовое число изотопа | Реакция синтеза | Период полураспада, сек | Энергия α-частиц, Мэв | Доли спонтанного деления по отношению к α-распаду | Место и год открытия |
251 | 239Pu(16O, 4n)[31] | 0,5–1,0 | 8,6 | Дубна, 1967 | |
244Cm(12C, 5n) | 0,8±0,3 | 8,6 | Беркли, 1967 | ||
252 | 239Pu(16O, 5n) | 4,5±1,5 | 8,41 | Дубна, 1966 | |
253 | 242Pu(16O, 5n) | 95±10 | 8,01 | Дубна, 1966 | |
239Pu(18O, 4n) | |||||
254 | 239Am(15N, 4n) | 65±10 | 8,11 | 1/1800 | Дубна, 1963–1966 |
242Pu(16O, 4n) | |||||
238U(22Ne, 6n) | |||||
255 | 238U(22Ne, 5n) | 180±10 | 8,09 | Дубна, 1966 | |
242Pu(18O, 5n) | |||||
256 | 238U(22Ne, 4n) | 3,7±0,5 | 8,42 | 1/200 | Дубна, 1963 |
242Pu(18O, 4n) | |||||
257 | 248Cm(12C, 3n) | 23±0,2 | 8,23 (50%), 8,27 (50%) | Беркли, 1967 | |
248Cm(13C, 3n) | |||||
258 | 248Cm(13C, 3n) | 1,2∙10–3 | — | 100% | Беркли, 1968 |
259 | 248Cm(18O, α, 3n) | 1,5+0,5 часа | 7,5 | 20% | Ок-Ридж, 1970 |
Группа, работавшая в Нобелевском институте, считала, что, скорее всего, ею был получен изотоп 253102 (период полураспада T1/2 равен примерно 10 минутам и энергия альфа-частиц Eα около 8,5 Мэв). Оказалось, что этого изотопа составляет всего 95 секунд, a Eα — 8,01 Мэв. Тогда стали поговаривать о изотопе 251102. Но в 1967 г. в Дубне и Беркли смогли получить и этот изотоп. Период полураспада его ядер оказался 0,8±0,3 секунды, Eα — 8,6 Мэв. Опять не сходились концы с концами…
Московский синтез 1958 г. Изотоп 253102; T1/2 = 2–40 секунд, Eα = 8,9 Мэв. Эти цифры тоже отличаются от результатов проверочных экспериментов. Правда, когда в 1966 г. в Дубне был получен более легкий изотоп — 252102, оказалось, что его характеристики (T1/2=4,5 секунды, Eα=8,4 Мэв) близки к указанным в московской работе. Вполне вероятно, но в 1958 г. в Институте атомной энергии были действительно получены первые атомы элемента № 102, но уровень техники того времени не позволил точно определить массовое число и энергию альфа-распада изотопа. О разнице в характеристиках калифорнийского изотопа 254102 рассказывалось выше.
В 1961 г. в Беркли был получен изотоп 255102, и этот эксперимент был воспроизведен в Дубне. И здесь выяснилась разница в характеристиках. По американским данным, период полураспада ядер 255102 составил примерно 15 секунд, a Eα=8,2 Мэв. В Дубне были получены совсем другие цифры: T1/2=3 минуты, Eα=8,09 Мэв.
Пятый изотоп — 256102 был впервые получен в Дубне.
Естественно, может возникнуть вопрос: насколько точны новые данные? Ответ: советские ученые не абсолютизируют свои результаты, не выдают их за истину в последней инстанции. Но достоверность этих результатов, бесспорно, намного больше, чем результатов первых работ. К началу новых синтезов в реакторах были накоплены достаточные количества изотопов плутония и америция, необходимых для изготовления высококачественных мишеней. Прецизионные детекторы альфа-излучения и экспрессные методы физической идентификации изотопов, которыми мы располагали, были разработаны уже после окончания ранних работ. Все это позволило делать выводы на основании наблюдения уже не десятков, а сотен и тысяч атомов.