Но общество способно накапливать информацию не только в средствах и продуктах труда, но и в системе научного знания. Познавая мир, человек обогащает себя и ноосферу научной информацией. Значит, источником накопления информации в ноосфере служит преобразовательная и познавательная активность человека. «Основной процесс накопления информации в ноосфере, — говорит А.Д. Урсул, — связан с ассимиляцией разнообразия за счет внешней, окружающей общество природы, в результате чего объем и масса ноосферы могут возрастать неограниченно»[80].
Расширение ноосферы в космос в настоящее время выражается и в получении научной информации о космосе с помощью космонавтов и автоматов. Нет, однако, сомнений, что со временем возникнет и космическое производство, т. е. практическое освоение небесных тел, переделка ближнего, а может быть, и дальнего космоса по воле человека. Тогда из космоса будет поступать и производственная информация, первые зачатки которой в принципе уже существуют (например, разведка лунных недр, изучение лунного грунта). Ближний космос со временем станет местом обитания и трудовой деятельности человека. Ноосфера охватит сначала ближайшие к Земле небесные тела, а затем, быть может, и всю Солнечную систему. Как это произойдет? Каковы ближние и дальние перспективы освоения космоса?[81]
Уже сегодня около Земли обращаются тысячи спутников. На околоземных орбитах начали действовать долговременные орбитальные станции со сменным персоналом. В будущем некоторые из них, вероятно, возьмут на себя функции заправочных станций для межпланетных пилотируемых ракет. Станет возможной и сборка космических кораблей на околоземных орбитах из блоков, предварительно доставленных в район «строительства». Семейство спутников разных типов и назначений обеспечит человечество постоянной научной информацией о событиях в космосе и на Земле.
Уже три небесных тела (Луна, Венера и Марс) временно обзавелись на наших глазах своими искусственными спутниками. Создание таких спутников, по-видимому, неизбежный этап в освоении планет (наряду с предварительной посылкой зондов в окрестности изучаемого небесного тела и на его поверхность). Есть все основания думать, что эта последовательность сохранится и в будущем, так что к концу века, возможно, за большинством планет станут следить зоркие глаза их искусственных спутников.
Луноходы и марсоходы (и вообще планетоходы) наряду с автоматическими неподвижными станциями, мягко севшими на поверхность изучаемых небесных тел, станут третьей очередью автоматов (после «пролетных» зондов с жесткой посадкой), изучающих соседние миры. Несомненно, что их совершенствование приведет к появлению таких космических автоматов, которые смогут выполнить почти любую задачу в космосе, в частности, взлет с планет и возвращение на Землю (как, например, было на Луне). На таком пути нет принципиально неразрешимых трудностей, но есть огромные технические проблемы, главная из которых, пожалуй, заключается в создании компактных, легких и в то же время эффективных тяговых систем.
Преимущества космических автоматов очевидны. Они не столь чувствительны к суровой космической среде, как человек, и их использование не грозит человеческими жертвами. Межпланетные автоматические станции гораздо легче пилотируемых космических кораблей, а это дает экономические выгоды при запуске. Хотя есть и другие преимущества автоматов перед человеком, все же освоение Солнечной системы осуществится, разумеется, не только автоматами, но и людьми. И здесь можно найти немало аналогий из земного опыта.
Разведка Антарктиды началась с плаваний около ее берегов. За ними последовали кратковременные высадки на берег и экспедиции внутрь материка вплоть до Южного полюса. Наконец, на наших глазах в Антарктиде обосновались постоянные научные станции (со сменным персоналом). Возможно, что со временем начнется планомерное заселение Антарктиды, сопровождающееся изменением ее природы в сторону, благоприятную для человека.
Луна намного суровее Антарктиды. Но хотя ее отделяют от Земли более трети миллиона километров, она начала осваиваться гораздо более быстрыми темпами, чем самый южный земной материк. Сначала (с 1959 г.) космические зонды пролетали вблизи Луны. Затем вокруг Луны появились первые искусственные спутники. За ними последовали жесткие прилунения. Наконец, космические автоматы мягко опустились на лунную поверхность, предварив этой разведкой соседнего мира первые лунные экспедиции. Что будет дальше, предусмотреть нетрудно. После серии новых экспедиций луноходов и космонавтов, которые соберут достаточно обстоятельную информацию о соседнем мире, на Луне, вероятно, возникнут сначала временные, затем постоянные научные станции. Следующий же шаг в освоении Луны выразится, вероятно, в ее постепенном заселении, в создании на ее поверхности постоянных энергетических установок, в развитии лунной индустрии, в широком использовании местных ресурсов вещества и энергии.
Есть два пути приспособления человека к враждебным ему условиям космической среды. В кабинах космических кораблей системы жизнеобеспечения создают миниатюрный «филиал Земли», земной комфорт. В микромасштабе ту же функцию выполняют скафандры. На первых стадиях освоения Луны и других небесных тел эта методика и впредь останется единственно возможной. Но, «закрепившись на Луне, построив первые лунные жилища, по характеру системы жизнеобеспечения напоминающие кабины космических кораблей, человечество, возможно, приступит к реорганизации самой Луны, к искусственному созданию на ней в глобальном масштабе обстановки, пригодной для обитания. Иначе говоря, не пассивное приспособление к внешней враждебной космической среде, а ее изменение в сторону, благоприятную человеку, активная переделка внешней среды в «земноподобном» духе — вот второй путь, обеспечивающий возможность расселения человечества в космосе.
Конечно, второй путь труднее первого. В некоторых случаях он неосуществим или, выразимся осторожнее, кажется неосуществимым в рамках известной нам техники. Например, создание вокруг Луны постоянной атмосферы за счет газов, полученных искусственно из лунных пород, представляется проектом нереальным, фантастическим, главным образом из-за слабости лунной гравитации. Тяжесть на лунной поверхности в 6 раз меньше земной и искусственная лунная атмосфера должна быстро улетучиться. Но тот же проект для Марса принципиально вполне осуществим и можно думать, что когда-нибудь усилия человечества превратят Марс во вторую маленькую Землю.
Из всех планет Солнечной системы Марс, вероятно, первым подвергнется «колонизации». Как ни суров его луноподобный облик, неожиданно для астрономов раскрытый средствами космонавтики, все же по совокупности признаков Марс наиболее близок к Земле. Пилотируемые полеты к Марсу и высадка первой экспедиции на Марсе проектируются до 2000 г. Однако уже сейчас Марс обзавелся искусственными спутниками и на его поверхность мягко опустились советские автоматические станции. Это случилось всего несколько лет спустя после достижения аналогичного этапа в изучении Луны, несмотря на то, что даже при наибольшем сближении с Землей Марс почти в 150 раз дальше Луны, — факт многозначительный, снова иллюстрирующий необычайно бурный прогресс космонавтики.
Если бы мы располагали двигателем, который на протяжении всего полета к Марсу давал бы космическому кораблю ускорение 9,8 м/с2, то до Марса можно было бы добраться всего за неделю. Сейчас не видно даже подхода к техническому решению такой задачи, но можно ли утверждать, что в будущем средства межпланетных сообщений останутся такими же, как и сегодня? Впрочем, если речь идет о Марсе, то и при современном уровне техники его освоение вполне возможно. Вероятно, заселению Марса будут предшествовать те же стадии, что и заселению Луны. Но этот далекий мир мы знаем гораздо хуже соседнего небесного тела и нас на Марсе наверняка ждут неожиданности. По этой причине (а также из-за удаленности Марса) его разведка, вероятно, растянется на большие сроки, чем разведка Луны.