Первые опыты по радиолокационному обнаружению объектов относятся к 30-м гг. XX в., причем ведущие мировые страны (СССР, Англия, Германия, США) стали заниматься этой проблемой практически одновременно, но в обстановке строжайшей секретности. Поначалу к технике радиолокации военные руководители относились прохладно, не доверяли новым технологиям. Но произошла большая трагедия, и это в значительной степени способствовало изменению мнения на предмет использования локаторов.

В 1941 г., 7 декабря, японский флот состоявший из шести авианосцев с 360 самолетами, двух линкоров, трех крейсеров, девяти эсминцев и шести подводных лодок, скрытно подошел к американской базе Перл-Харбор, недалеко от Гавайских островов. На базе имелась одна новая РЛС, но она включалась всего на несколько часов в сутки, да и к ее данным относились достаточно прохладно. В то утро РЛС все-таки работала и обнаружила на расстоянии 140 миль большое скопление самолетов. Но американцы сочли самолеты своими, так как они ждали прибытия отряда бомбардировщиков. Японские самолеты достигли Перл-Харбора только через час, и за это время можно было как-то подготовиться, поднять в воздух истребительную авиацию, задействовать корабельные и береговые зенитные орудия. Увы, беспечность и самоуверенность американцев привели к потере четырех линкоров, крейсера, трех эсминцев, 260 самолетов, свыше 5000 раненых и убитых — японцы просто разбомбили неподвижные и несопротивляющиеся цели. Интересно отметить, что японская сторона потеряла всего 29 самолетов и 55 летчиков.

Техника радиолокации сегодня находится на очень высоком уровне и продолжает развиваться. С ее помощью можно определить направление на объект, его высоту над поверхностью и скорость перемещения. Поражает и разрешающая способность технических средств: некоторые станции могут распознать цель с максимальным размером около 20 см на расстоянии 1500 км!

Как устроена простейшая радиолокационная станция? Она состоит из передатчика и приемника, расположенных рядом. Передатчик формирует короткие импульсы, которые с помощью направленных антенн излучаются в сторону объекта. Достигнув цели, радиоволна отражается от нее и спустя некоторое время возвращается к приемнику. Для прохождения пути от РЛС до цели и обратно волне потребуется некоторое время, которое, учитывая постоянство скорости распространения волны, легко пересчитать в расстояние. В самом простом случае измерить расстояние можно с помощью… осциллографа (рис. 11.71).

Путеводитель в мир электроники. Книга 2 - _134.jpg

Рис. 11.71. Измерение расстояния до объекта средствами РЛС

В момент излучения импульса (1) запускается развертка осциллографа и антенна переключается на прием. Отраженный импульс (2) приходит спустя некоторое время t, поэтому, помножив полученное. время на калибровочный множитель, можно определить расстояние. А можно нанести на экран осциллографа сетку и проградуировать ее непосредственно в единицах расстояния, например в километрах.

Более сложные РЛС кругового обзора изготавливаются с поворотной антенной, перемещение которой синхронизируется с лучом на специальной осциллографической трубке, в центре которой условно находится РЛС, а сканирующий луч постоянно перемещается по радиусу, отмечая точками объекты.

Радиолокационные станции широко используются для зондирования ионосферы, когда антенна РЛС направляется вертикально вверх. Зондирование осуществляют на частотах от 0,5 до 20 МГц. Результатом этой работы является получение высотно-частотной характеристики ионосферы. Это нужно для прогнозирования эффективности работы коротковолновых линий связи. Поскольку в моменты ионосферных возмущений (это наиболее четко проявляется в полярных районах) наступает резкое ухудшение параметров связи, важно своевременно обнаружить такие явления и предупредить соответствующие службы. Интересно отметить, что результаты наблюдений за ионосферой вместе с наблюдениями за другими геофизическими явлениями позволяют составлять прогнозы поведения ионосферы вперед на несколько лет!

Радиоастрономия — эта область науки проделала за несколько десятилетий путь от зарождения до расцвета. Совершено множество открытий источников излучения, находящихся во Вселенной и в не видимых обычным глазом — квазаров, пульсаров. Специальные радиотелескопы, принимающие космическое излучение, занимают на земле километровые площади, являясь уникальными техническими сооружениями. Колоссальный рывок совершила радиоастрономия и на пути к объяснению картины зарождения Вселенной. В частности, было открыто реликтовое излучение. Как известно, теория зарождения Вселенной в результате Большого взрыва, была построена советским математиком А. А. Фридманом в 1922–1924 гг. В частности, из этой теории следовало, что Вселенная в далеком прошлом не имела ни отдельных небесных тел, ни галактик, а все вещество было однородным, очень плотным и быстро расширялось. В начале 1940-х гг. американским физиком Г. Гамовым на основе теории Фридмана сделано предположение о том, что температура этого однородного вещества была огромной. Физик высказал предположение: в сегодняшней вселенной должно существовать слабое излучение, оставшееся от эпохи большой плотности. И действительно, в 1965 г. американские физики А. Пензиас и Р. Вилсон открыли реликтовое излучение, доказав справедливость теории «горячей вселенной».

Максимум интенсивности реликтового излучения приходится на участок длин волн порядка 0,1 см. Наличие реликтового электромагнитного излучения позволяет исследовать процессы, происходившие во Вселенной 10–20 млрд. лет назад. Интересно отметить, что в диапазоне сантиметровых и миллиметровых волн реликтовое излучение по интенсивности во много тысяч раз превосходит излучение звезд и обнаруживается при помощи радиотелескопов.

Наличие реликтового излучения позволило продвинуться вперед и по такому важному для астрономов вопросу, как распределение плотности вещества во вселенной. Поскольку излучение несет информацию о точках пространства, разнесенных очень далеко друг от друга, по его интенсивности судят о плотности вещества в этих точках. Интенсивность этого излучения, приходящего к нам с диаметрально противоположных точек неба, оказалась на удивление одинаковой. Объяснения данному научному факту пока не найдено. Техника радиоастрономии — это передний край современной науки.

Физиология. Электромагнитные волны — отличный инструмент для изучения функционирования человеческого организма, диагностики заболеваний. Наличие электрических сигналов при работе мышц и мозга человека объясняет наличие радиоизлучения живого организма на частотах около 150 кГц. Об исследованиях в этой области впервые было сообщено еще в 1960 г. на конференции Общества американских радиоинженеров. Известные всем электрокардиограммы и электроэнцифалограммы дают отличное представление о работе сердца и головного мозга. Практически любое нарушение четко отслеживается специально подготовленными врачами, предупреждается развитие патологий, даются лечебные рекомендации. В последнее время появились приборы, которые после снятия электрограммы автоматически анализируют графики, выдают необходимые данные, избавляя врача от рутинной работы и позволяя ему сосредоточиться на главном.

Человеческий мозг при своей работе излучает множество периодических сигналов, называемых ритмами. Учеными установлено, что все ритмы живых организмов так или иначе связаны с основным земным ритмом — суточным. Интересно, что в настоящее время у человека обнаружено более 100 различных ритмов. Все эти ритмы также связаны друг с другом, образуя логичную цепь.

Рассогласование ритмической деятельности организма может вызвать даже заболевания. Например, десинхроноз возникает, когда человек перебирается на противоположную сторону земного шара. Ему приходится какое-то время адаптироваться к новым условиям.