Н. — Значит, достаточно расположить такой диод на пути тока из сети, чтобы он оказался выпрямленным, так как электроны могут идти только от катода к аноду, а не обратно.

Л. — Правильно. Кенотрон (рис. 80) может быть включен как со стороны положительного, так и отрицательного конца. Главное — это сделать так, чтобы направление движения электронов, полученное в результате работы кенотрона, соответствовало направлению их движения в лампах, по дорогам, идущим от катодов к анодам.

Радио?.. Это очень просто! - _222.jpg

Рис. 80. Схема простейшего выпрямителя.

Радио?.. Это очень просто! - _223.jpg
ОПАСНО!.. ВЫСОКОЕ НАПРЯЖЕНИЕ!
Радио?.. Это очень просто! - _224.jpg

Н. — Боюсь, что высокое напряжение, полученное таким образом, будет недостаточным. Сеть, которая имеется у нас, дает только 127 или 220 в. А ведь ты говорил, что некоторые лампы должны иметь анодное напряжение в несколько сотен волы. Что же я сделаю с этим напряжением?..

Л. — Да у тебя не будет и этого, так как на выпрямительной лампе упадет часть напряжения; ведь она тоже имеет некоторое внутреннее сопротивление. Таким образом ты далеко не уедешь. К счастью, мы располагаем очень простым средством, позволяющим повышать в желаемом отношении напряжение переменного тока из сети.

Н. — Что же это за чудесное средство?

Л. — Это наш старый знакомый — трансформатор. Допустим, что мы имеем трансформатор с одинаковым количеством витков в первичной и вторичной обмотках. Если к первичной обмотке такого трансформатора подвести некоторое напряжение, то какое же напряжение появится на концах вторичной?

Радио?.. Это очень просто! - _225.jpg

Н. — Я полагаю, что такое же, так как обмотки имеют одинаковое количество витков.

Л. — Правильно Теперь допустим, что трансформатор сделан с несколькими вторичными обмотками, например с тремя, каждая из которых имеет то же число витков, что и первичная обмотка. Подавая 127 в на первичную обмотку, мы получим также 127 в на каждой из вторичных обмоток. Соединим последовательно три вторичные обмотки так, чтобы одна являлась продолжением другой. Тогда напряжения всех обмоток сложатся и между началом первой обмотки и концом третьей мы получим напряжение, равное 380 в.

Н. — При этом три вторичные обмотки являются по существу одной обмоткой. И чтобы показать, что я не забыл законов индукции, я делаю вывод что трансформатор способен повышать (или понижать) напряжение во столько раз, во сколько его вторичная обмотка имеет больше (или меньше) витков, чем первичная обмотка.

Л. — Ну, Незнайкин, я тебя поздравляю, ты ответил прямо как урок по физике и все меньше заслуживаешь свое имя. Таким образом, мы установили, что, применяя трансформатор, можно повысить напряжение перед тем, как его выпрямить (рис. 81). В зависимости от требуемого напряжения мы выбираем необходимое соотношение числа витков первичной и вторичной обмоток, или коэффициент трансформации.

Радио?.. Это очень просто! - _226.jpg

Рис. 81. Схема выпрямителя с повышающим трансформатором.

Радио?.. Это очень просто! - _227.jpg

Н. — Но во всем этом есть одно обстоятельство, которое меня смущает. Каждый период переменного тока имеет два полупериода различной полярности, а для работы мы используем только один из них (рис. 82). Нет ли какого-либо устройства, которое позволило бы использовать для питания приемника также и второй полупериод переменного тока, придав ему необходимое напряжение?

Радио?.. Это очень просто! - _228.jpg

Рис. 82. Сплошной линией показаны положительные полупериоды тока, выпрямленного по схемам на рис. 80 и 81; пунктиром изображены отрицательные полупериоды, не пропущенные кенотроном.

Радио?.. Это очень просто! - _229.jpg
МЕТОД ИСПОЛЬЗОВАНИЯ «НЕГОДНЫХ» ПОЛУПЕРИОДОВ ПЕРЕМЕННОГО ТОКА
Радио?.. Это очень просто! - _230.jpg

Л. — Да, есть, это осуществляется в так называемом двухполупериодном выпрямителе переменного тока. Для этого мы используем два одинаковых устройства питания по схеме на рис. 81. Расположив их рядом (рис. 83), мы видим, что в нагрузках (т.е. в приемниках) обоих выпрямителей ток имеет одно и то же направление. Следовательно, оба выпрямителя можно использовать для питания одного приемника (рис. 84). При этом каждый из кенотронов будет выпрямлять один из двух полупериодов переменного тока. Ты легко сможешь проследить теперь сам путь тока для каждого полупериода.

Радио?.. Это очень просто! - _231.jpg

Рис. 83. Две схемы выпрямителей, аналогичные схеме, изображенной на рис. 81, причем каждая выпрямляет один из полупериодов переменного тока.

Радио?.. Это очень просто! - _232.jpg

Рис. 84. Два выпрямителя по схемам на рис. 83 питают один и тот же приемник, выпрямляя оба полупериода переменного тока.

Н. — Пусть во время первого полупериода переменного тока электроны пройдут через витки вторичной обмотки w1, слева направо. Пройдя через приемник и лампу Л1 они возвратятся к обмотке w1. Пройти через обмотку w2 электроны не смогут, так как при этом они должны пройти через лампу Л2 от анода к катоду, а это им запрещено.

В следующий полупериод электроны через обмотку w1 не пройдут, так как они не смогут пройти через кенотрон Л1 от анода к катоду. Но они свободно пройдут через обмотку w2 (справа налево), приемник и кенотрон Л2, причем направление их через приемник оказывается таким же, как и в течение первого полупериода.

Л. — Вот видишь, таким образом нам удается использовать оба полупериода переменного тока (рис. 85). Заметь теперь, что обе вторичные обмотки имеют одну общую точку. Это дает возможность заменить два трансформатора одним, во вторичной обмотке которого делается отвод от средней точки.

Радио?.. Это очень просто! - _233.jpg

Рис. 85. Сплошной линией показана форма тока при двухполупериодном выпрямлении; пунктиром изображены полупериоды, задержанные одним выпрямителем, но выпрямленные другим.

Кроме того, можно применить специальный кенотрон, в баллоне которого помещены общий катод и два анода. Такая лампа называется двуханодным кенотроном. Схема двухтактного выпрямителя с двуханодным кенотроном показана на рис. 86.

Радио?.. Это очень просто! - _234.jpg

Рис. 86. Два кенотрона в схеме на рис. 84 заменены одним двуханодным кенотроном.