Такие атомы одного и того же элемента, имеющие одинаковый заряд ядра, но разный вес его, занимают в таблице Менделеева одно и то же место; их называют изотопами.

Существование изотопов химических элементов гениально предсказал А. М. Бутлеров еще в 1882 году.

Дальнейшее изучение атомных ядер привело к открытию изотопов у всех элементов, как радиоактивных, так и нерадиоактивных. Число изотопов у различных элементов бывает самое различное. Так, медь (атомный вес 63,57), например, имеет изотопы с атомными весами 63 и 65; хлор (атомный вес 35,5) имеет также два изотопа с атомными весами 35 и 37 (определение массы отдельных атомов осуществляется при помощи прибора, называемого масс-спектрографом).

Именно потому, что медь и хлор имеют изотопы с разной массой, средний атомный вес природной меди и природного хлора, представляющих собой смесь изотопов, и получается дробным. Этим обстоятельством объясняются дробные числа атомных весов многих других элементов в менделеевской таблице.

Так происходит в природе.

С открытием радиоактивности учёные смело взялись за опыты по превращению элементов друг в друга. Впервые это удалось осуществить в 1919 году, когда были «обстреляны» атомы обыкновенного азота альфа-частицами.

При «бомбардировке» азота (вес 14 и заряд 7) ядрами гелия (вес 4, заряд 2) последние «застревают» в атомных ядрах азота. При этом получается ядро с массой 14 + 4 = 18 и зарядом 7 + 2 = 9. Это ядро элемента фтора. Однако такое ядро искусственно полученного фтора очень неустойчиво. Поэтому оно тут же распадается, выделяя из себя один протон, то-есть ядро водорода. Оставшееся ядро превращается в ядро изотопа кислорода (заряд 8 и масса 17).

Так, в XX веке было осуществлено первое действительное превращение элементов.

После этого учёные стали осуществлять в своих лабораториях превращения и многих других элементов. Так, при помощи тех же «атомных пуль» — альфа-частичек — было осуществлено превращение натрия в алюминий и магний, алюминия — в фосфор и кремний и т. д.

Правда, надо заметить, что количество полученных искусственно химических элементов ничтожно. И говорить сейчас о каком-либо широком практическом применении искусственных элементов мы, конечно, еще не можем. Исключением являются только два случая: это использование искусственно полученных элементов, не существующих в природе, о которых мы рассказываем дальше, для освобождения внутриатомной энергии и применение многих искусственных радиоактивных изотопов обычных элементов в научной работе и медицине.

И если в наши дни вы слышите порой о каких-то неведомых «учёных», якобы уже получающих золото искусственным путем, то можете быть уверены, что это лишь жульничество. К разряду именно таких «учёных» относились, например, японцы Мите и Нагаока, якобы получившие в 1924–1925 годах золото из ртути под влиянием сильнейших электрических разрядов.

Рассказ о строении вещества - i_028.jpg

Рис. 23. Образование ядра атома кислорода (левая более короткая ветвь вилки) при столкновении альфа-частицы с атомом азота (снимок в камере Вильсона).

В поисках более успешных способов ядерных превращений учёные нашли и другие «снаряды» для обстрела атомов. Были использованы протоны, нейтроны и другие частицы.

Рассказ о строении вещества - i_029.jpg

Рис. 24 Фотография распада ядра азота, поглотившего быструю частицу. Образуется четыре альфа-частицы способ Мысовского — Жданова).

Использование этих «снарядов» дало в руки физиков ещё большие возможности.

Были подвергнуты бомбардировке атомы почти всех элементов менделеевской таблицы. К настоящему времени осуществлено множество самых разнообразных ядерных превращений.

На этом пути учёные пришли к новым замечательным открытиям.

Так, прежде всего, при обстреле атомов различных нерадиоактивных элементов были получены искусственные радиоактивные изотопы этих элементов.

Некоторые из таких изотопов «жили» всего минуты и даже секунды.

Все такие неустойчивые изотопы содержали в своих ядрах либо избыток, либо недостаток нейтронов по сравнению со своими устойчивыми напарниками.

Например, ядро устойчивого, нерадиоактивного азота построено из 7 нейтронов и 7 протонов. А в ядре радиоактивного изотопа азота на 7 протонов приходится только 6 нейтронов. Наоборот, ядро радиоактивного изотопа натрия содержит в себе 13 нейтронов против 12, содержащихся в природном натрии.

Так была найдена разгадка устойчивости и неустойчивости атомов различных элементов. Оказывается устойчивость атомного ядра зависит от того, в каком соотношении находятся в нём нейтроны и протоны.

Только ядра с определёнными соотношениями числа нейтронов к числу протонов являются устойчивыми. Любое нарушение этих соотношений — и ядро атома становится радиоактивным. Распад ядра идёт до тех пор, пока в нём не восстановится нарушенное равновесие протонов и нейтронов.

Изучая процессы внутриядерных превращений, физики пришли и к ещё более изумительному достижению. Они получили совершенно новые, не существовавшие в природе элементы!

Вот история этого открытия.

Изучая воздействие быстрых нейтронов на ядра различных элементов, учёные добрались и до последнего, самого тяжёлого элемента таблицы — до урана. Ядро этого элемента имеет самый большой вес — 238 и самый большой заряд — 92. Когда атомы урана были «обстреляны» нейтронами, то оказалось, что нейтроны, поглощаемые ядрами урановых атомов, увеличивают массу этих ядер до 239. Полученный таким образом уран с весом 239 и зарядом 92, в отличие от своего изотопа 238 (природного урана), распадается очень быстро — в течение нескольких десятков минут. Уран 239 выбрасывает из себя не альфа-частицы, как природный уран, а бета-частицы, то-есть быстрые электроны. В результате такого распада заряд ядра увеличивается до 93, а вес остаётся тем же — 239 (такие химические элементы, имеющие одинаковый атомный вес, но различный заряд ядра, называются изобарами, то-есть «имеющими один и тот же вес»). Получился новый элемент с порядковым номером 93, которого нет в природе.

Этот элемент был назван нептунием.

Но нептуний также неустойчив. Из его ядер вновь вылетает по электрону. Получается новый элемент с зарядом 94 и весом 239 — плутоний. Этот элемент распадается уже медленно, как и уран, с выделением альфа-частиц.

Подобным же образом были получены и еще четыре новых элемента. Все они получили название трансурановых элементов, то-есть элементов, расположенных в таблице Менделеева за ураном.

Так периодическая таблица элементов пополнилась в наше время шестью новыми элементами, созданными искусственным путём.

Ещё более интересным было третье открытие. Производя опыты с «бомбардировкой» урана нейтронами, физики установили также, что под действием нейтронов с ядром урана могут происходить и другие превращения, а именно — в некоторых случаях ядро урана, захватив медленный нейтрон, раскалывается на две половины! В результате получаются два новых ядра, например, ядра атомов элементов криптона и бария или рубидия и цезия. Было установлено, что это происходит с ядром изотопа урана, имеющего массу 235.

И вот что оказалось замечательным при таком делении: во-первых, выделяется в короткое время огромное количество внутриядерной энергии и, во-вторых, из образовавшихся осколков урановых ядер вылетают новые освобождающиеся нейтроны (рис. 25).

Рассказ о строении вещества - i_030.jpg

Рис. 25. Цепная реакция распада атомных ядер урана-235.

А это последнее обстоятельство и явилось основой получения и использования внутриядерной, или, как ее часто называют, атомной энергии!

В самом деле, ведь вылетающие из разбитого первым нейтроном ядра несколько новых нейтронов в свою очередь способны вызывать деление новых ядер и создавать тем самым еще большее число «ядерных пуль» и т. д. Таким образом, стоит только расколоть одно-единственное ядро урана 235, как уже дальше реакция расщепления урановых ядер с массой 235 будет всё нарастать и нарастать, не прекращаясь до тех пор, пока разложится вся масса урана 235 (происходит так называемая цепная реакция распада урановых ядер). А вместе с этим будет выделяться всё большая и большая энергия.