Именно смешение логических типов привело ко всей путанице, спорам и даже нелепостям в таких вопросах, как «наследование приобретенных признаков» и законность привлечения «разума» в качестве принципа объяснения.
Все это имеет любопытную историю. В свое время многим трудно было перенести, что эволюция имеет случайную компоненту. Как полагали, это противоречило всему известному о приспособлении и целенаправленности, а также любой вере в создателя с определенными психическими (mental) свойствами. Критика «Происхождения видов» у Сэмюэля Батлера состояла, по существу, в том, что он обвинял Дарвина в исключении разума из числа объяснительных принципов его системы. Батлер хотел бы представить себе, что где-то в системе работает неслучайный разум, а потому предпочитал теориям Дарвина теории Ламарка. [Странно, что даже в книге Батлера «Эволюция прежде и теперь» мало что свидетельствует о сочувственном понимании тонкого мышления Ламарка.]
Оказалось, однако, что такая критика была полностью ошибочна в своем выборе поправок к теории Дарвина. В наши дни мы рассматриваем мышление и обучение (а может быть и соматическую изменчивость) как стохастические процессы. Мы поправили бы мыслителей девятнадцатого века не прибавлением нестохастического разума к процессу эволюции, а предположением, что мышление и эволюция равным образом несут в себе стохастическую составляющую. Оба они – разумные процессы (mental processes) в смысле критериев, приведенных в Главе 4.
Таким образом, перед нами две великих стохастических системы, отчасти взаимодействующих, и отчасти изолированных друг от друга. Одна из этих систем находится внутри индивида и называется обучением; другая заложена в наследственности и в популяциях и называется эволюцией. Одна относится к периоду жизни отдельного существа, другая же охватывает ряд поколений и множество индивидов.
Задача этой главы – показать, как эти две стохастические системы, действуя на разных уровнях логических типов, соединяются в единую долгоживущую биосферу, которая не могла бы существовать, если бы соматическая и генетическая изменчивость были принципиально иными, чем они есть.
Единство совместной системы необходимо.
Очень значительная часть того, что можно сказать о переплетении эволюции и соматической изменчивости имеет дедуктивный характер. На уровне теории, которой мы здесь занимаемся, нет наблюдательных данных, и экспериментирование еще не началось. Но это неудивительно. В конце концов, естественный отбор не имел почти никаких подтверждений в полевых наблюдениях до тех пор, пока Кетлуэлл (Kettletwell) не изучил в 1930-х годах бледную и темную разновидности пяденицы березовой (Biston betularia).
Во всяком случае, аргументы против гипотезы о наследуемости приобретенных признаков поучительны и послужат для иллюстрации нескольких аспектов запутанных отношений между двумя великими стохастическими процессами. Есть три таких аргумента, из которых убедителен только третий:
а. Первый аргумент состоит в том, что эту гипотезу следует отвергнуть за недостатком эмпирических подтверждений. Но экспериментирование в этой области невероятно трудно, а критика беспощадна, так что отсутствие свидетельств не вызывает удивления. Если бы наследование в смысле Ламарка произошло в полевых условиях, или даже в лаборатории, неясно, возможно ли было бы его распознать.
б. Второй критикой, до недавнего времени наиболее неоспоримой, было высказанное Августом Вейсманом (August Weissmann) в 1890-х годах утверждение, что не существует связи между сомой и зародышевой плазмой. [Сома – совокупность тканей организма; зародышевая плазма – материал, служащий для передачи наследственной информации. Дальше автор подробнее объясняет эти термины, введенные А.Вейсманом. – Прим. перев.] Вейсман был необычайно одаренный немецкий эмбриолог, который еще в молодости почти ослеп и посвятил себя теории. Он заметил, что многим организмам свойственна непрерывность того, что он назвал «зародышевой плазмой», то есть протоплазменной линии, переходящей из поколения в поколение, и что в каждом поколении фенотипическое тело или сома может рассматриваться как ответвление от зародышевой плазмы. Исходя из этого интуитивного прозрения, он доказывал, что не может быть обратной связи от соматической ветви к главному стволу – зародышевой плазме.
Упражнение правого бицепса несомненно усилит у индивида этот мускул, не нет никакого известного пути, по которому сообщение об этом соматическом изменении могло бы быть передано половым клеткам этого индивида. Эта критика, подобно первой, зависит от того же аргумента – от факта отсутствия свидетельств. Это ненадежная почва для заключений, и большинство биологов после Вейсмана стремилось превратить этот довод в дедуктивный, предполагая, что нет никакого мыслимого пути сообщения между бицепсом и будущей гаметой.
Но в наши дни это предположение не выглядит столь надежным, как двадцать лет назад. Если РНК может переносить отпечатки сегментов ДНК в другие части клетки, а возможно и в другие части тела, то можно себе представить, что отпечатки химических изменений в бицепсе могут быть перенесены в зародышевую плазму.
в. Заключительная и, на мой взгляд, единственно убедительная критика – это reductio ad absurdum [Приведение к нелепости (лат.) – логический прием, применяемый в доказательствах «от противного». – Прим. перев.], утверждение, что если бы наследование в смысле Ламарка было правилом, или даже обычным явлением, то вся система переплетенных стохастических процессов перестала бы действовать.
Я предлагаю здесь эту критику не только в виде попытки (может быть, напрасной) прикончить эту все еще не совсем мертвую химеру, но также для иллюстрации отношений между двумя стохастическими процессами. Представьте себе следующий диалог:
БИОЛОГ: Что же в точности утверждает теория Ламарка? Что вы называете «наследованием приобретенных признаков»?
ЛАМАРКИСТ: Это значит, что изменения в теле, произведенные окружающей средой, передаются потомку.
БИОЛОГ: Погодите немного, передаваться должно «изменение»? Но что же именно передается от родителя к потомку? Ведь «изменение», как я полагаю – это некоторая абстракция.
ЛАМАРКИСТ: Это эффект среды, например, брачные подушечки на лапах самца жабы-повитухи. [Большинство видов жаб спаривается в воде, и во время спаривания самец сжимает самку своими лапами, расположившись у нее на спине. В этот период года у него есть шершавые черные подушечки на лапах, возможно, «потому», что у нее скользкая кожа. В отличие от них, жаба-повитуха спаривается на суше и не имеет таких брачных подушечек. Перед Первой мировой войной австрийский ученый Пауль Каммерер (Paul Kammerer) утверждал, что он продемонстрировал пресловутое наследование приобретенных признаков, вынуждая жаб-повитух спариваться в воде. При этих обстоятельствах у самца развивались брачные подушечки. Утверждалось, что у потомков такого самца подушечки развивались даже на суше.]
БИОЛОГ: Я все еще не понимаю. Вы, конечно, не хотите сказать, что среда произвела брачные подушечки.
ЛАМАРКИСТ: Разумеется, нет. Их произвела жаба.
БИОЛОГ: Ах, вот как, значит, жаба в некотором смысле это знала, или имела «потенцию» отрастить себе брачные подушечки?
ЛАМАРКИСТ: Да, что-то в этом роде. Жаба могла произвести брачные подушечки, когда ее вынудили размножаться в воде.
БИОЛОГ: Вот как, значит, она может приспосабливаться. Правильно ли я Вас понимаю? Если она размножается на суше, как это нормально для ее вида жаб, то она не производит брачных подушечек. Но оказавшись в воде, она производит подушечки, подобно всем другим видам жаб. У нее есть выбор.
ЛАМАРКИСТ: Но некоторые из потомков жаб, произведших подушечки в воде, производили их даже на суше. Это я и называю наследованием приобретенных признаков.
БИОЛОГ: О, да, я понимаю. То, что было унаследовано – это была потеря выбора. Потомки больше не могли нормально размножаться на суше. И это поразительно.