[Картинка: i_019.jpg]

Рис. 2.15. Принципиальная схема микрофонного усилителя на полевом и биполярном транзисторах разной проводимости

Снимаемый с выхода микрофона ВМ1 сигнал через разделительный конденсатор С1 и резистор R1 подается на затвор полевого транзистора VТ1, на котором выполнен входной усилительный каскад. Резистор R2, величина сопротивления которого определяет значение входного сопротивления всей конструкции, обеспечивает по постоянному току связь затвора транзистора VТ1 с шиной корпуса. По постоянному току положение рабочей точки транзистора VТ1 определяется величинами сопротивлений резисторов R3, R4 и R5. По переменному току резистор R5 шунтирован конденсаторами С2 и С3. Сравнительно большая емкость конденсатора С2 обеспечивает достаточное усиление в нижней части диапазона частот усиливаемого сигнала. В свою очередь, величина емкости конденсатора С3 обеспечивает достаточное усиление в верхней части диапазона частот.

Усиленный сигнал снимается с нагрузочного резистора R3 и подается непосредственно на базу транзистора VT2, имеющего p-n-p-проводимость, на котором выполнен второй каскад усиления. Резистор R6, включенный в коллекторную цепь транзистора VT2, не только является нагрузочным резистором во втором усилительном каскаде, но и входит в состав цепи обратной связи транзистора VT1. Соотношением величин резисторов R6 и R4 определяется коэффициент усиления всей конструкции. При необходимости усиление можноуменьшить, подобрав величину сопротивления резистора R4. Сформированный на коллекторе транзистора VТ2 сигнал через резистор R7 и разделительный конденсатор С4 подается на выход микрофонного усилителя.

Микрофонные усилители с согласующим каскадом

В миниатюрных радиопередатчиках для согласования выходного сопротивления микрофонного усилителя с входным сопротивлением последующих каскадов нередко на выходе усилительного каскада устанавливается буферный каскад, например, хорошо известный эмиттерный повторитель.

Принципиальная схема одного из вариантов микрофонного усилителя с буферным каскадом на выходе приведена на рис. 2.16. Среди основных характеристик данной конструкции следует отметить коэффициент усиления НЧ-сигнала, равный 22, а также диапазон частот, находящийся в пределах от 100 Гц до 5000 Гц. Питание усилителя осуществляется постоянным напряжением +9 В, потребляемый ток не превышает 2 мА.

[Картинка: i_020.jpg]

Рис. 2.16. Принципиальная схема микрофонного усилителя с буферным каскадом (вариант 1)

Сформированный на выходе микрофона ВМ1 низкочастотный сигнал через конденсатор C1 и резистор R2 проходит на базу транзистора VT1, на котором выполнен непосредственно усилительный каскад. Стабилизация рабочей точки этого транзистора осуществляется с помощью цепи отрицательной обратной связи по току. Особенностью данного каскада является еще одна цепь обратной связи, в состав которой входит конденсатор С2, включенный между коллектором и базой транзистора VT1. От величин емкостей этого конденсатора и конденсатора С3 зависят верхняя и нижняя границы диапазона частот усиливаемого сигнала.

Сигнал, снимаемый с коллекторной нагрузки транзистора VT1 (резистор R5), поступает на эмиттерный повторитель, выполненный на транзисторе VT2. При этом связь между каскадами осуществляется непосредственно, то есть между коллектором транзистора VT1 и базой транзистора VT2 отсутствует разделительный конденсатор. С эмиттера транзистора VT2 полезный сигнал через конденсатор С4 проходит на выход микрофонного усилителя. Использование эмиттерного повторителя в качестве выходного каскада микрофонного усилителя обеспечивает малое выходное сопротивление рассмотренной конструкции.

Принципиальная схема еще одного варианта микрофонного усилителя с буферным каскадом приведена на рис. 2.17.

[Картинка: i_021.jpg]

Рис. 2.17. Принципиальная схема микрофонного усилителя с буферным каскадом (вариант 2)

Как и в рассмотренных ранее конструкциях, сигнал с выхода микрофона ВМ1 подается на вход усилительного каскада через разделительный конденсатор С1. Первый усилительный каскад выполнен на транзисторе VT1, стабилизация положения рабочей точки которого по постоянному току обеспечивается резистором R3. По переменному току этот резистор шунтирован конденсатором С2.

Сигнал, сформированный на резисторе R2, который является коллекторной нагрузкой транзистора VT1, подается на эмиттерный повторитель, выполненный на транзисторе VT2. При этом связь между каскадами осуществляется непосредственно, то есть между коллектором транзистора VT1 и базой транзистора VT2 отсутствует разделительный конденсатор. С эмиттера транзистора VT2 полезный сигнал через конденсатор С3 проходит на выход микрофонного усилителя.

Сопротивление участка цепи между эмиттером транзистора VT2 и шиной корпуса определяется суммой величин сопротивлений включенных последовательно резисторов R5 и R6.При том к точке их соединения подключен резистор R4. Таким образом, эмиттер транзистора VТ2 и база транзистора VТ1 оказываются соединенными между собой через резисторы R4 и R5, чем обеспечивается возникновение между каскадами отрицательной обратной связи по постоянному току. В результате напряжение на базе транзистора VТ1 формируется с помощью резистора R4 из напряжения, присутствующего на эмиттере транзистора VТ2, которое в свою очередь формируется при прохождении коллекторного тока этоготранзистора через резисторы R5 и R6. По переменному току резистор R6 шунтирован конденсатором С4.

Применение конденсаторного микрофона требует подачи в цепь его включения соответствующего напряжения питания, для чего в схеме установлен резистор R1.

При разработке миниатюрных радиопередающих устройств и радиомикрофонов используются и другие, часто весьма интересные и оригинальные схемотехнические решения микрофонных усилителей. Однако ограниченный объем предлагаемого издания, к сожалению, не позволяет их рассмотреть. Необходимую дополнительную информацию заинтересованные читатели могут найти в специализированной литературе и в сети Интернет.

3. Генераторы сигнала высокой частоты

В миниатюрных транзисторных радиопередающих устройствах формирование высокочастотного сигнала несущей частоты осуществляется с помощью специальных каскадов, представляющих собой обычные ВЧ-генераторы. При разработке таких генераторных каскадов чаще всего используются весьма простые и хорошо известные схемотехнические решения, позволяющие добиться весьма приемлемых характеристик.

В зависимости от особенностей схемотехнических решений, применяемых при их конструировании, ВЧ-генераторы можно разделить на несколько групп. В настоящее время втранзисторных микропередатчиках и радиомикрофонах широкое распространение получили обычные генераторы с резонансными LC-контурами, а также генераторы с кварцевой стабилизацией частоты, выполненные на биполярных или полевых транзисторах. Поэтому в данной главе рассматриваются особенности функционирования транзисторных ВЧ-генераторов, их основные параметры и характеристики, а также основные достоинства и недостатки высокочастотных генераторов, разработанных на основе наиболее часто используемых в радиолюбительских конструкциях схемотехнических решений.

Необходимо отметить, что подробное описание теоретических основ функционирования узлов и блоков высокочастотных генераторов малогабаритных радиопередатчиков, к сожалению, выходит за рамки предлагаемого издания в связи с его ограниченным объемом. Поэтому принципы работы таких устройств будут рассмотрены весьма упрощенно, не претендуя на академическую точность.

Конечно же, в специализированной литературе и в сети Интернет можно найти немало схемотехнических решений и описаний конструкций микропередатчиков, в которых для генерации высокочастотных сигналов несущей частоты используются каскады, выполненные на другой элементной базе, например, на микросхемах, на туннельных диодах или л-диодах. Однако рассмотрение основных принципов функционирования таких устройств выходит за рамки предлагаемой книги.