При отсутствии входного сигнала через транзистор VТ1 протекает ток стока, называемый током покоя. Этот ток обеспечивает формирование на резисторе R4 определенной разности потенциалов, то есть на верхнем по схеме выводе этого резистора будет положительное напряжение небольшой величины. Между затвором и шиной корпуса, имеющей нулевой потенциал, включен резистор R2, общее сопротивление которого несоизмеримо больше сопротивления резистора R4. В результате на затворе транзистора VТ1 формируется потенциал, который по сравнению с малым положительным потенциалом истока будет более отрицательным. Это небольшое отрицательное напряжение на затворе обеспечивает частичное закрытие транзистора, при этом устанавливается меньшая величина тока стока. Таким образом, величина тока покоя транзистора VТ1 зависит от сопротивления резистора, включенного в его цепь истока, то есть в данном случае от сопротивления резистора R4. Чем больше величина сопротивления резистора R4, тем большее отрицательное напряжение смещения подается на затвор транзистора VТ1. Поэтому изменением сопротивления резистора R4 подбирается такое напряжение смещения, при котором обеспечивается работа транзистора на линейном участке характеристики.

Для того чтобы через резистор R4 проходила лишь постоянная составляющая коллекторного тока, параллельно этому резистору в цепи эмиттера транзистора VТ1 включен электролитический конденсатор С3. Через этот конденсатор постоянный ток не проходит, поэтому на положение рабочей точки транзистора конденсатор С3 не оказывает никакого влияния. Сопротивление данного конденсатора переменному току невелико, поэтому переменная составляющая тока истока свободно проходит через конденсатор С3 нашину корпуса.

Снимаемый с резистора R3 усиленный сигнал через разделительный конденсатор С2 подается на выход микрофонного усилителя.

Необходимо отметить, что при сборке данного усилителя следует соблюдать общепринятые меры предосторожности, обеспечивающие защиту полевых транзисторов от выхода из строя вследствие воздействия статического электричества. В процессе пайки следует пользоваться паяльником с заземленным жалом, газовым паяльником или же специальной паяльной станцией. Не следует забывать и об антистатическом браслете.

2.3.Двухкаскадные микрофонные усилители

Рассмотренные схемы микрофонных усилителей представляют собой однокаскадные конструкции. Однако при разработке малогабаритных транзисторных радиопередатчиков широко используются схемотехнические решения, основанные на применении многокаскадных, чаще всего двухкаскадных, схем. В двухкаскадных микрофонных усилителях оба каскада обычно используются для усиления сигнала. В то же время нередко встречаются схемотехнические решения, в которых один из каскадов работает в режиме усиления, а второй используется в качестве согласующего каскада.

Усилители с непосредственной связью

В миниатюрных транзисторных радиопередающих устройствах нередко возникает необходимость получения большого значения коэффициента усиления низкочастотного сигнала, для чего требуется использовать два и более каскадов усиления. В этом случае применение многокаскадных микрофонных усилителей с емкостной связью, каждый из каскадов которых выполнен на основе рассмотренных схем, не всегда приводит к удовлетворительным результатам. Поэтому в миниатюрных радиопередающих устройствах широкое распространение получили схемотехнические решения микрофонных усилителей с непосредственной связью между каскадами.

Такие усилители содержат меньше деталей, имеют меньшую энергоемкость, легко настраиваются и менее критичны к изменениям величины напряжения питания. Помимо этого усилители с непосредственной связью между каскадами имеют более равномерную полосу пропускания, а нелинейные искажения в них могут быть сведены к минимуму. Одним из главных достоинств таких усилителей является сравнительно высокая температурная стабильность.

Однако высокая температурная стабильность, как и остальные перечисленные выше преимущества усилителей с непосредственной связью между каскадами, могут быть реализованы лишь при использовании глубокой отрицательной обратной связи по постоянному току, подаваемой с выхода на первый каскад усилителя. При применении соответствующего схемотехнического решения любые изменения тока, вызванные как температурными колебаниями, так и другими причинами, усиливаются последующими каскадами и подаются на вход усилителя в такой полярности. В результате усилитель возвращается в исходное состояние.

Принципиальная схема одного из вариантов двухкаскадного микрофонного усилителя с непосредственной связью между каскадами приведена на рис. 2.11. При напряжении питания от 9 до 12 В и максимальном входном напряжении 25 мВ уровень выходного напряжения в частотном диапазоне от 10 Гц до 40 кГц может достигать 5 В. При этом потребляемый ток не превышает 2 мА.

[Картинка: i_015.jpg]

Рис. 2.11. Принципиальная схема микрофонного усилителя с непосредственной связью между каскадами (вариант 1)

Низкочастотный сигнал, сформированный микрофоном ВМ1, через разделительный конденсатор С2 поступает на вход первого усилительного каскада, выполненного на транзисторе VT1. Конденсатор С1 обеспечивает фильтрацию нежелательных высокочастотных составляющих входного сигнала. Через резистор R1 на электретный микрофон ВМ1 подается напряжение питания.

Усиленный сигнал с коллекторной нагрузки транзистора VT1 (резистор R2) подается непосредственно на базу транзистора VT2, на котором выполнен второй усилительный каскад. С коллекторной нагрузки этого транзистора сигнал поступает на выход усилителя через разделительный конденсатор С4.

Необходимо отметить, что резистор R2, используемый в качестве нагрузочного резистора в цепи коллектора транзистора VТ1, имеет сравнительно большое сопротивление. Врезультате напряжение на коллекторе транзистора VТ1 будет достаточно малым, что позволяет подключить базу транзистора VТ2 непосредственно к коллектору транзистора VТ1. Немалое значение в выборе режима работы транзистора VТ2 играет и величина сопротивления резистора R6.

Между эмиттером транзистора VТ2 и базой транзистора VТ1 включен резистор R4, обеспечивающий возникновение между каскадами отрицательной обратной связи по постоянному току. В результате напряжение на базе транзистора VТ1 формируется с помощью резистора R4 из напряжения, присутствующего на эмиттере транзистора VТ2, которое в свою очередь формируется при прохождении коллекторного тока этого транзистора через резистор R6. По переменному току резистор R6 шунтирован конденсатором С3.

Если по какой-либо причине ток, проходящий через транзистор VТ2, увеличится, то соответственно увеличится и напряжение на резисторах R5 и R6. В результате, благодаря резистору R4, увеличится напряжение на базе транзистора VТ1, что приведет к увеличению его коллекторного тока и соответствующему увеличению падения напряжения на резисторе R2, а это вызовет уменьшение напряжения на коллекторе транзистора VТ1, к которому непосредственно подключена база транзистора VТ2. Уменьшение значения напряжения на базе транзистора VТ2 приведет к уменьшению коллекторного тока этого транзистора и соответствующему уменьшению напряжения на резисторах R5 и R6. При этом уменьшится напряжение на базе транзистора VТ1, этот транзистор прикроется и вновь будет работать в нормальном, первоначально установленном режиме. Таким образом, токи и рабочие точки транзисторов VТ1 и VТ2 будут стабилизированы. Аналогичным образом схема стабилизации функционирует и при возможном уменьшении коллекторного тока транзистора VТ2, например, при уменьшении температуры окружающей среды.

У усилителей с непосредственной связью между каскадами для установки режима обычно бывает достаточно подобрать величину сопротивления лишь одного резистора. В рассмотренной схеме режим работы устанавливается подбором сопротивления резистора R6 или резистора R2.

В связи с тем, что резистор R3 не зашунтирован конденсатором, в данном усилителе возникает обратная связь по переменному току, обеспечивающая резкое уменьшение искажений.