Гемоглобин взрослого человека состоит из двух α- и β-полипептидов (α2, β2). У эмбрионов человека структура гемоглобина иная. Она состоит из двух α- и γ-цепей (α2, γ2). Это так называемый фетальный гемоглобин. По своим свойствам он во многом отличается от гемоглобина взрослого человека и обладает большим сродством к кислороду при меньшем содержании О2 в крови. В старости содержание фетального гемоглобина увеличивается. Следовательно, в старости в молекуле гемоглобина чаще сочетаются иные, чем у взрослого человека, полипептидные цепи. Известно, что образование фетального гемоглобина увеличивается при кислородном голодании. Быть может, возникающее при старении кислородное голодание — гипоксия — стимулирует образование фетального гемоглобина. Как бы то ни было, образование его свидетельствует об изменении вторичной структуры молекул гемоглобина, связанном со сдвигами в системе генетической регуляции.
5. Важный молекулярный приспособительный механизм — явление генетической индукции. Смысл ее состоит в том, что, когда в клетке начинают накапливаться те или иные вещества, усиленно синтезируются ферменты их расщепления. Подобный эффект вызывает и ряд гормонов. Этот усиленный синтез ферментов связан с включением регуляторных механизмов, стимулирующих активность определенных генов. Благодаря генетической индукции клетка приспосабливается к условиям существования. При старении сильно изменяется генетическая индукция ферментов. Как видно на рис. 11, рост активности ферментов в ответ на различные дозы гормона в печени взрослых и старых крыс неодинаков.
Рис. 11. Возрастные различия в изменении активности тирозинаминотрансферазы в печени в зависимости от дозы гидрокортизона.
1 — взрослые крысы; 2 — старые. За 100 % принят исходный уровень активности фермента. Введение гидрокортизона в дозе: А — 1.0; Б — 3.0; В — 5.0 мг/100 г.
6. Генорегуляторные изменения ограничивают потенциальные возможности белоксинтезирующих систем. Длительная и напряженная функция клетки приводит к усиленному образованию белка и увеличению ее размера — гипертрофии. Гипертрофия клеток приводит и к гипертрофии органа. Примером может служить гипертрофия сердца при пороках его клапанов, при артериальной гипертонии, скелетных мышц у спортсменов, одного из парных органов (почка, надпочечник) при удалении другого. В эксперименте гипертрофию сердца вызывают следующим образом: на аорту животного накладывается кольцо, суживающее в несколько раз ее диаметр. Для того чтобы в этих условиях левый желудочек обеспечивал потребность организма, он должен производить значительно большую работу. Это ведет к гиперфункции, а затем к гипертрофии миокарда. На рис. 12 представлены данные В. Г. Шевчука об особенностях развития гипертрофии сердца у взрослых и старых крыс в одинаковые сроки после наложения кольца на аорту. В этой работе удалось выяснить, что у старых животных гиперфункция сердечной мышцы ведет к слабой активации биосинтеза белка, к менее выраженной гипертрофии. В результате этого у старых животных при длительных повышенных нагрузках значительно чаще, чем у взрослых, развивается сердечная недостаточность.
Рис. 12. Особенности развития гипертрофии сердца у взрослых (А) и старых (Б) крыс в разные сроки после сужения аорты.
1 — масса левого желудочка; 2 — содержание нерастворимых белков; 3 — растворимых белков; 4 — сердечный выброс; 5 — содержание креатинфосфатазы
Подобный же результат получен при изучении гиперфункции и гипертрофии почки. У старых животных после удаления одной почки активизация биосинтеза белка увеличение веса оставшейся почки оказались менее выражены, чем у взрослых. После кровопотери активизируется синтез белков крови, и это восполняет возникший дефект. У старых животных восстановление белков крови проходит медленнее.
Таким образом, при старении сокращается диапазон активизации биосинтеза белка в условиях напряженной деятельности клетки, органа. Этот молекулярно-генетический механизм в значительной степени ограничивает приспособительные возможности клеток в старости. Видимо, ограничение активизации биосинтеза белка связано с изменениями в системе регулирования генетического аппарата, в генах-регуляторах. Важное значение имеют и сдвиги в трансляции, в передаче информации от ДНК к рибосомам.
7. Р. И. Салганик провел интересное исследование: длительное введение в организм гормонов сначала вызывает усиленный биосинтез определенных ферментов. Однако в дальнейшем, несмотря на продолжающееся введение гормонов, активность фермента, его содержание и интенсивность биосинтеза молекул начинают падать. Развивается угасание генетической активности, ее истощение, работоспособность гена падает. В нашей лаборатории Х. К. Мурадян изучил развитие этого феномена — ограничения работоспособности гена у животных разного возраста. Животным ежедневно вводился гормон (гидрокортизон), и в разные сроки после начала введения определялась активность группы ферментов в печени. Результаты этой серии (рис. 8) показывают, что у старых крыс угнетение, истощение, подавление работоспособности генов развиваются значительно быстрее.
Биосинтез белка — сложный многозвеньевой процесс — начинается с образования иРНК и заканчивается сборкой готовой белковой молекулы. Специальный анализ показал, что все особенности угасания генетической индукции в проведенных опытах связаны с изменением считывания информации с молекул ДНК, т. е. с процессами транскрипции. Об этом свидетельствует то, что в ходе длительного введения гормона происходит не только снижение новообразования фермента, но и снижение обновления отдельных фракций РНК. В нашей лаборатории было показано, что при длительном введении гидрокортизона у старых животных быстрее развивается снижение синтеза информационной и рибосомальной РНК, подавление процесса транскрипции.
Описанный феномен — ограничение работоспособности гена — может объяснить многие возрастные сдвиги обмена и функции. Он раскрывает важнейший молекулярный механизм сокращения приспособительных возможностей клетки и организма при старении.
8. В каждой клетке "работает" только небольшая часть ее генома. Не исключено, что значительные нарушения регулирования генома в процессе старения могут привести к активизации генов, "молчавших" всю жизнь. Это вызовет появление белка, ранее не синтезировавшегося в клетке. В зависимости от его типа могут возникнуть различные сдвиги в деятельности клетки, вплоть до ее гибели. Некоторые исследователи полагают, что существуют "гены-самоубийцы", активность их на определенном этапе развития вызывает гибель клетки и организма. По мнению американского исследователя В. Денкла, в старости активизируется синтез гормона, подавляющего тканевое дыхание. В клетках находятся молчащие до поры до времени онковирусы, вызывающие раковое перерождение клетки. Изменение генной регуляции способствует их активизации и возникновению рака.
9. При деятельности клеток постоянно изменяется концентрация ионов натрия, калия, кальция внутри клеток. Доказано, что эти ионы оказывают влияние на считывание генетической информации, на сборку белка. Возрастные изменения концентрации ионов могут приводить к сдвигам регуляции генома.
Конкретные генорегуляторные механизмы старения неодинаковы в различных клетках. Известно, что отличие клеток друг от друга, например нервных, мышечных, железистых, и состоит в том, что у них "работают" различные гены, а одни и те же гены функционируют с неодинаковой интенсивностью. Именно это и определяет специфику их белкового состава, обмена и в конце концов функции. Последовательность работы генов связана с регуляцией генетического аппарата. До сих пор современная молекулярная биология при объяснении первичных механизмов старения исходит из принципа "один ген — один белок". Однако есть генетическая информация, недостаточно еще изученная, определяющая общее строение клетки, межклеточные взаимоотношения, количество клеток, форму органа и др. Мы полагаем, что наиболее общие механизмы старения связаны с нарушением этого уровня регуляции генетической информации. Именно этот генетический уровень определяет системность процесса старения и витаукта. Мы назвали его алгоритмическим. Алгоритм — порядок действия, предписание. Именно этим объясняется множественность нарушений при неглубоких изменениях в отдельных звеньях системы. Как известно, стареют и отдельные белковые молекулы. Они проходят как бы жизненный цикл от момента их синтеза до распада. В старости многие из молекул белков становятся менее доступными для ферментативной "атаки", что приводит к появлению более старых белков.