Кроме способности вертикального взлета и посадки, самолеты ВВП обладают дополнительными преимуществами, а именно возможностью зависания, разворота в этом положении и полета в боковом направлении в зависимости от используемых двигательной установки и системы управления.

Перечисленные преимущества самолетов ВВП в боевых условиях значительно обесцениваются наличием серьезных недостатков, приводящих к усложнению эксплуатации таких самолетов и ухудшению их летных данных. Испытания сверхзвуковых самолетов и опыт их эксплуатации в войсковых частях показывают, что рассредоточение большого числа малых групп самолетов в различных местах выгодно с точки зрения безопасности, но неудобно с точки зрения материально-технического обеспечения (топливом, запасными частями, боеприпасами и т. д.), которое в общем не должно зависеть от наземного транспорта. Используемые в настоящее время системы материально-технического обеспечения и обслуживания не приспособлены к эксплуатации в труднодоступной местности. Поэтому необходимо создать новую систему, способную функционировать при частой смене мест базирования, решать, кроме задач управления полетами и технического обслуживания, много других проблем, в частности вопросы работы, жилья, питания, бытового обслуживания и отдыха летного и наземного персонала. В этой ситуации ясно, что только военно-морская авиация, располагающая авианосцами, готова к эффективной эксплуатации самолетов ВВП. И не случайно поэтому при проектировании современных самолетов ВВП и КВП предполагается их базирование на палубах авианосцев.

Другая группа недостатков самолетов ВВП касается летных характеристик. Одной из них является чувствительность к порывам ветра при полете на малых скоростях, вследствие чего взлет и посадка в неспокойной атмосфере становятся небезопасными. К недостаткам следует отнести и значительную разницу в грузоподъемности самолета обычного взлета и вертикального или короткого взлета.

Взлетная масса самолета во время эксплуатации может быть различной в зависимости от количества принятого на борт груза (вооружения или топлива). При этом у обычных самолетов увеличение взлетной массы приводит к удлинению пути разбега, а у самолетов ВВП-к невозможности вертикального взлета. Для используемых в настоящее время двигательных установок приближенно можно считать, что самолет ВВП в варианте вертикального взлета может поднять груз, в два раза меньший, чем при обычном взлете. Ввиду этого диапазон задач и радиус действия такого самолета существенно зависят от расположения района боевых операций по отношению к месту взлета и от возможности выбора последующего места посадки. Определяющим параметром самолета ВВП является величина, обратная тяговооруженности, т.е. отношение взлетной массы к тяге при взлете. Исследования показали, что для вертикального взлета необходимо наличие значительного резерва вертикальной составляющей тяги по отношению к весу самолета. В современных околозвуковых и сверхзвуковых самолетах ВВП отношение взлетной массы к тяге двигателей составляет ~ 0,65-0,85 кг/даН. Вертикальная тяга создается либо путем отклонения вниз реактивных струй тяговых двигателей, обеспечивающих поступательное движение самолета, либо с помощью специальных подъемных двигателей, установленных в положении, близком к вертикальному.

Таблица 7. Характеристики самолетов вертикального взлета и посадки

Самолет

Назначение

Экипаж

Аэродинамическая схема

Система управления

Двигательная установка

«Мираж- Бальзак»

Экспериментальный

1

«Бесхвостка», треугольное крыло, низкоплан

Аэродинамическая + реактивная (сжатым воздухом)

8 подъемных, 1 маршевый двигатель

«Мираж» V-02

Истребитель-бомбардировщик

1

То же

То же

То же

VJ-101C Х-2

Экспериментальный

1

Классическая, стреловидное крыло, высоко- план

Аэродинамическая + реактивная (тягой двигателей)

2 подъемных, 4 подъемно-маршевых двигателя в поворотных гондолах

XFV-12A

Истребитель-бомбардировщик

1

«Утка», стреловидное крыло, высокоплан

Аэродинамическая + реактивная (эжективные закрылки, регулирующие величину и направление тяги)

1 тяговый двигатель с эжекторными щитками

Самолет

Размах, м

Длина, м

Высота, м

Площадь несущей поверхности, м2

Стандартная взлетная масса, кг

Стандартная удельная нагрузка, кг/м2

Отношение массы тяге 1* , кг/даН

Максимальное число Маха

«Мираж- Бальзак»

7,58

12,80

4,25

29,0

6100

210

2,77 (0,83)

– /-

«Мираж» V-02

8,72

18,0

5,55

– /-

12000

– /-

1,43 (0,96)

2,04

VJ-101C Х-2

6,61

15,70

4,13

18,60

7 690

413

1,20 (0,88)

1,14

XFY-12A

8,69

13,39

3,15

27,20

6259

230

0,98 (0,64)

2,0

1* Данные в скобках относятся к вертикальному взлету.

Сверхзвуковые самолеты - pic_75.jpg

Рис. 1.55. Расположение подъемной двигательной установки и элементов системы струйного (реактивного) управления самолета «Мираж- Бальзак» фирмы «Дассо».

В табл. 7 представлены характеристики четырех сверхзвуковых самолетов вертикального взлета и посадки, в том числе околозвукового самолета VJ-101C, развивающего М = 1,14 (по проекту М = 2,0). Сравнение показывает, что самолеты различаются аэродинамическими схемами, системами управления на различных этапах полета и принципами работы двигательных установок.

Появление отдельных двигателей для вертикального и горизонтального полета в самолетах «Мираж-Бальзак» (рис. 1.55) и «Мираж» III-V фирмы «Дассо» не было случайным. Этому послужили две причины. Первая из них определяется желанием использовать уже существующую конструкцию с минимальными изменениями. Вторая причина вытекает из сравнительной оценки преимуществ и недостатков двигательной установки такого типа. Разделение функций между двигателями позволяет выбрать оптимальные типы двигателей для весьма различных условий взлета-посадки и горизонтального полета, особенно на сверхзвуковой скорости.

Не менее важной является проблема безопасности во время зависания, так как в случае аварии одного из нескольких подъемных двигателей должна сохраняться возможность благополучного приземления. Параметры такой двигательной установки зависят главным образом от характеристик подъемных двигателей. Эти двигатели должны иметь малую удельную массу (по отношению к подъемной силе), малые размеры, высокую надежность и низкую стоимость. Выполнение этих требований оказывается возможным благодаря кратковременной работе двигателей-два раза на каждый полет по 30^0 с в ограниченном диапазоне скоростей и высот. Как следует из опубликованных данных, такая двигательная установка на самолете ВВП может быть эффективной только при условии создания подъемных двигателей с удельной массой не более 0,05 кг/даН. (Для сравнения напомним, что двигатели самолета «Мираж» III-V-02 имеют удельную массу 0,08 кг/даН.)

Сверхзвуковые самолеты - pic_76.jpg

Рис. 1.56. Компоновочная схема самолета VJ-101C.