Титан был открыт X. Гюйгенсом весной 1655 года. Около двух веков он оставался безымянным, до тех пор, пока сэр Д. Гершель не решил дать названия семи известным к тому времени спутникам Сатурна. Название было вполне удачным, так как по своим размерам с учетом атмосферы Титан — самая большая из лун Солнечной системы, а размеры твердого тела Титана (радиус 2575 километров) превосходит лишь Ганимед, радиус которого 2640 километров. Первым, кто сказал об атмосфере Титана, был каталонский астроном Д. Солá. Сейчас трудно сказать, действительно ли видел атмосферу Титана Сола. Он скомпрометировал себя ошибочными публикациями об облаках над спутниками Юпитера. Тем не менее после публикаций Сола сэр Д. Джинс включил Титан как пример в свои знаменитые расчеты об ускользании атмосфер с различных планет Солнечной системы. Джинс показал, что если температура Титана находится в пределах 60–100 градусов Кельвина, то вещества с молекулярным весом более 16 никогда не смогут оставить луну Сатурна.
Много газов имеют молекулярный вес свыше 16, и среди них наибольший интерес представляет аммиак, который присутствует в атмосферах Юпитера и Сатурна, но аммиак при тех температурах, которые предполагались на Титане, не мог бы существовать в виде газа, он должен быть твердым, замерзать. Есть, конечно, и другие газы: аргон, азот, но поиски их были затруднены тем обстоятельством, что эти газы не поглощают свет в инфракрасной области. Поэтому астрономы стали искать в атмосфере Титана метан (молекулярный вес равен 16), и в 1944 году Д. Койпер из Чикагского университета обнаружил его при исследовании спектров Титана.
В течение последующих перед полетом «Вояджера» десятилетий появились дополнительные модели атмосферы Титана. Многие из них были противоречивы.
К концу 70-х годов остались лишь две конкурентоспособные модели. Согласно одной из них температура поверхности Титана 86 градусов Кельвина, давление у поверхности 20 миллибар, около 0,02 давления у поверхности нашей Земли, а атмосфера на 90 процентов состоит из метана. Эту модель предложили ученые из Принстона. Д. Хантен, о котором мы упоминали ранее, был не согласен с этой моделью. По его мнению, атмосфера Титана должна состоять из азота, температура у поверхности — около 200 градусов Кельвина, а давление в тысячу раз больше, чем давали его коллеги из Принстона, — около 20 бар, то есть в двадцать раз больше, чем на Земле. Эксперименты, проведенные в ноябре 1980 года, когда «Вояджер» прошел всего в 7 тысячах километрах от Титана, прояснили картину и позволили понять истинное положение вещей.
Хочу заметить, что мы современники удивительных событий, происходящих на наших глазах в науке. Если сравнительно недавно наши знания основывались лишь на данных чисто астрономических наблюдений и были поэтому неполными, то сегодня положение резко изменилось. Космические исследования настолько сузили диапазон ошибок, исключили столь много неоднозначностей в наших представлениях, что в ряде случаев только изучение планет с помощью космических аппаратов дает возможность расставить все точки над «и» и добиться окончательного решения того или иного научного вопроса.
Справедливости ради необходимо сказать, что и космические исследования отнюдь не всегда являются истиной в конечной инстанции. Но в случае Титана именно эксперименты «Вояджера» помогли правильно решить загадки спутника Сатурна. Истина, как всегда, лежала посредине. Хантен оказался прав в отношении азота. Именно он основной компонент в атмосфере Титана. Но принстонцы были правы в отношении температуры, она оказалась равной 95 градусам Кельвина у поверхности. Давление же атмосферы составляет около полутора атмосфер. Чуть выше, чем у поверхности Земли.
Атмосфера Титана содержит сильнейший яд — синильную кислоту, много углеводородов: метан, этан, пропан, ацетилен, этилен, диацетилен, метилацетилен. Есть и азотсодержащие компоненты: цианацетилен, цианоген. Следующие после азота по распространенности газы в атмосфере Титана — аргон, его чуть больше десяти процентов, и метан, чуть меньше десяти процентов. Есть в атмосфере и водород и углекислый газ.
Атмосфера Титана простирается на высоту более 400 километров над его поверхностью, на уровне высот между 200 и 300 километров находится поглощающая свет дымка, а под нею слой аэрозоля красноватого цвета. Этот слой образован полимерными частичками, возникающими под воздействием ультрафиолетового излучения Солнца на атмосферу Титана.
На высоте около десяти километров от поверхности могут формироваться метановые облака. В этом случае на поверхности Титана могут быть метановые моря, дожди на Титане состоят из капель жидкого газа, который используется на Земле как природное топливо.
Солнце и звезды не видны с поверхности Титана. В полдень там так же темно, как в лунную ночь на Земле. Космонавтам, которые когда-нибудь высадятся на этом спутнике Сатурна, будет нелегко. Для исследования Титана им придется иметь корабль, так как согласно некоторым широко принятым сегодня концепциям вся поверхность Титана покрыта метановым океаном…
Поистине удивительная атмосфера Титана поставила перед учеными новые интереснейшие проблемы. Как могла образоваться такая атмосфера? Какие процессы в ней происходят?
При рассмотрении этих вопросов возникла идея о том, что, быть может, именно на поверхности Титана лежит ключ к тайне происхождения жизни. Я обсуждал эти вопросы с известными американскими учеными Т. Оуэном и К. Саганом, и вот к чему сводится их точка зрения. Все наши эксперименты на Земле по абиогенным синтезам органических соединений в условиях, моделирующих природные условия на ранней Земле, ограничены временем жизни человечества. Никому еще не удалось создать в лаборатории цепочку нуклеиновой кислоты. Как сказал Оуэн, «лабораторная трубка мала, да и времени немного». А у природы и времени достаточно, и места хватает.
И вот именно Титан можно рассматривать как огромную природную лабораторию планетарного масштаба для экспериментов по предбиологическим синтезам. Состав атмосферы для этого исключительно благоприятен.
О каких абиогенных синтезах может идти речь, если на Титане нет кислорода? Дело в том, что средняя плотность Титана (1,9 грамма на квадратный сантиметр) указывает нам на присутствие большого количества водяных льдов на этом спутнике Сатурна, — вот и источник кислорода. И по оценкам Сагана, поверхность Титана покрыта километровым слоем органических соединений. Так что нет никаких сомнений в том, что Титан представляет собой первостепенный интерес для будущих космических экспериментов.
Теперь буквально несколько слов о самых дальних планетах — Уране, Нептуне, Плутоне.
Уран и Нептун имеют мощные атмосферы, которые, однако, отличаются от атмосфер Юпитера и Сатурна по двум причинам. Во-первых, тела Урана и Нептуна состоят из льдов с примесью горных пород, и эти тела весьма значительны. Во-вторых, на самой окраине Солнечной системы, где они формировались, температуры еще ниже, чем в зоне Юпитера и Сатурна. Теоретики предполагают, что Уран, например, на 3/4 своего радиуса состоит из твердого вещества. В центре планеты находится ядро из горных пород, далее идет ледяная мантия, состоящая из льдов метана и аммиака, а потом газожидкая оболочка, в которую входят водород, гелий, метан и аммиак. Содержание метана на Уране и Нептуне гораздо больше, чем на Юпитере.
Это очень большие планеты: Уран почти в 15 раз тяжелее Земли, а Нептун — в 17. Не только масса, но и размеры их достаточно внушительны. Радиус этих планет примерно в четыре раза больше земного. А вот плотность невелика — 1,27 грамма в кубическом сантиметре у Урана и чуть больше у Нептуна — 1,62. Обе планеты имеют горячие недра. Температуры в центре достигают 10–14 тысяч градусов Кельвина, а давления — нескольких миллионов атмосфер.
Уран так же, как и Венера, вращается в обратном направлении вокруг своей оси. Причем Уран вращается как бы лежа на боку. У Урана обнаружены кольца.