У людей примерно 2 из 5 оплодотворенных яйцеклеток содержат по крайней мере один мутировавший ген. Это означает, что около 40 процентов людей так или иначе являются мутантами в отношении своих родителей. Поскольку мутировавший ген передается по наследству, покуда не «вымрет», по некоторым оценкам каждый человек несет в себе примерно восемь мутировавших генов – и почти во всех случаях мутация генов является неблагоприятной. (Тем обстоятельством, что мы почти не ощущаем этого, мы обязаны тому, что гены формируются парами, и если один ненормален, то нас поддерживает другой.) Вероятность мутаций зависит лишь от слепой случайности. Существуют факторы, которые увеличивают вероятность несовершенного копирования, например, различные химикаты, которые вмешиваются в четкую работу ДНК и затрудняют ее стремление работать только с соответствующими нуклеотидами. Поскольку молекула ДНК очень сложна, в нее способны внедряться многие химикаты. Такие химикаты называют «мутагенами».

Существуют также субатомные частицы с их выходками. Молекулы ДНК спрятаны в хромосомах, которые сами погребены в ядрах, в центре клеток, и химикатам не так-то просто добраться до них. Субатомные частицы, однако, легко пробиваются в клетки, и, ударяя в молекулы ДНК, способны выбить из их структуры какие-либо атомы или изменить их физически.

Работа молекул ДНК в этом случае будет нарушена настолько, что они вообще потеряют способность копироваться, и клетка может погибнуть. Если большое число жизненно важных клеток убито, индивидуум может погибнуть от «лучевой болезни».

При менее сильном воздействии клетка может выжить, а произойдет лишь мутация. (Мутация может вызывать заболевание раком, и известно, что энергетическое излучение канцерогенно точно так же, как и мутагенно. Собственно, одно подразумевает другое.) Конечно, если яйцеклетки или клетки спермы испытывают такое воздействие, образуются отпрыски с мутациями, иногда настолько радикальными, что наблюдаются серьезные врожденные дефекты. (Это может быть вызвано также и химическими мутагенами.) Мутагенный эффект радиации был впервые продемонстрирован в 1926 году американским биологом Германом Джозефом Мюллером (1890—1967), когда он исследовал мутации на плодовых мушках; для удобства он размножал их и подставлял под рентгеновские лучи.

Рентгеновские лучи и радиоактивное излучение были недоступны до двадцатого века, но это не означает, что тогда не было мутагенных форм радиации. На протяжении жизни солнечный свет существовал всегда, а солнечный свет – тоже слабый мутаген, так как содержит излучение (поэтому слишком длительное пребывание на солнце увеличивает вероятность заболевания раком кожи).

Кроме того, существуют космические лучи, которым жизнь подвергается постоянно. Нет сомнения (хотя кое-кто может не согласиться), что космические лучи вследствие мутаций, которые они вызывают, были главной движущей силой эволюции в течение последних нескольких миллиардов лет. Так что восемь мутировавших генов на индивидуум – почти все вредоносные – это, так сказать, цена, которую мы платим за кое-какие благоприобретения, от которых зависит будущее.

Конечно, если немного – хорошо, это не означает, что много – лучше. Наиболее неблагоприятные мутации, возникшие по какой бы то ни было причине, подтачивают здоровье данной особи, поскольку в результате дают ряд индивидуумов, так сказать, «ниже нормы». Это «генетический груз» для таких особей (термин впервые применен Г. Дж. Мюллером). Однако имеется все же существенный процент индивидуумов без серьезных неблагоприятных мутаций, а также немного индивидуумов, обладающих благоприятными мутациями. Им удается последовательно перебороть и выпестовать ненормативных, так что в целом особи выживают и развиваются, несмотря на генетический груз.

Но что, если генетический груз возрастет из-за того, что по какой-то причине возрастет частота мутаций? Это означает, что будет больше индивидуумов ниже нормы и меньше нормальных, лучших по качествам особей. При этих условиях просто может не оказаться достаточного количества нормальных или лучших по качествам индивидуумов, чтобы сохранить особи растущими, несмотря на всех ненормативных индивидуумов. Короче говоря, увеличивающийся генетический груз не ускорит эволюцию, как можно было бы предполагать, а ослабит особи, приведет к их вымиранию. Малый генетический груз – полезен, большой – смертелен.

Но что может вызвать увеличение частоты мутаций? Случайные факторы остаются случайными, и большинство мутагенных факторов в прошлой истории – солнечный свет, химикаты, естественная радиоактивность – были более или менее постоянными в своем влиянии. А как насчет космических лучей? Что, если по какой-либо причине интенсивность космических лучей, достигающих Земли, увеличится? Не может ли это ослабить многие особи и привести к великому умиранию благодаря генетическому грузу, который станет слишком большим для того, чтобы выжить?

Даже если согласиться с тем, что имевшие место великие умирания в истории Земли были связаны с высыханием внутренних морей, не могло ли привести к великому умиранию также и неожиданное увеличение интенсивности космических лучей? Вероятно, могло, но что в таком случае вызывало неожиданное увеличение интенсивности космических лучей?

Одна возможная причина – расширение сферы действия сверхновых, которые, в конечном счете, являются основным источником космических лучей. Но это маловероятно. В сотнях миллиардов звезд нашей Галактики общее количество сверхновых из года в год, из века в век, остается приблизительно одним и тем же. А не могло ли быть так, что расположение сверхновых меняется, что одно время большее их число находится на другом конце Галактики, а в другое время большее число их находится на нашем конце?

Собственно, это не воздействовало бы на интенсивность космических лучей так сильно, как можно подумать. Поскольку частицы космических лучей движутся искривленными путями благодаря большому числу обширных магнитных полей в Галактике, они имеют тенденцию, так сказать, размазываться, распределяться равномерно по Галактике, независимо от места происхождения.

Сверхновыми постоянно образуются большие количества частиц новых космических лучей, в меньшем количестве их образуют обычные гигантские звезды, частицы эти постоянно ускоряются и становятся более энергетичными. При достаточном ускорении они вообще улетают из Галактики, к тому же большие их количества постоянно попадают в звезды и другие объекты Галактики. Возможно, за 15 миллиардов лет существования Галактики установилось равновесие, и сколько частиц космических лучей образуется, столько же и исчезает. По этой причине мы можем считать, что интенсивность космических лучей вблизи Земли будет оставаться постоянной.

Существует, однако, одно возможное исключение. Если бы сверхновая взорвалась вблизи Земли, это могло бы вызвать бедствие. Я рассматривал ранее такие близкие сверхновые и пришел к выводу, что шансы такого происшествия в обозримом будущем очень малы. Даже в этом случае у меня речь шла только о свете и о тепле, которые мы могли бы получить от подобного объекта. А как же насчет космических лучей, которые бы мы получили, поскольку расстояние от близкой сверхновой было бы для нас слишком малым, чтобы рассчитывать на достаточное их распространение и рассеяние их магнитными полями?

В 1968 году американские ученые К. Д. Терри и В. X. Такер обратили внимание на довольно большую сверхновую, которая излучала космические лучи в триллион раз интенсивнее, чем Солнце, и это излучение в космос продолжалось по крайней мере неделю. Если бы такая сверхновая была от нас на расстоянии хотя бы в 16 световых лет, энергия космических лучей, достигающих нас даже с такого огромного расстояния, была бы равна суммарной солнечной радиации за этот же период, и этого должно было бы хватить, чтобы каждый из нас (возможно, также и большинство других форм жизни) получил смертельную дозу радиации. Дополнительное тепло, доставляемое такой сверхновой, и тепловая волна, которая получилась бы в результате, в таком случае не имели бы уже никакого значения.