Новинкой также является использование специальной системы снижения нагрузок и управления ими, что непосредственно связано с проблемами прочности.
К особенностям проекта, безусловно, относится и широкая международная кооперация.
Как я понимаю, материальным воплощением отмеченных особенностей проекта стал композитный кессон крыла, который испытывается в ЦАГИ?
Силовой кессон крыла из композиционных материалов – это важнейший несущий элемент конструкции. В настоящее время мы ведем испытания его прототипов. Затем перейдем к испытаниям реальных натурных образцов кессона. Это – главный элемент нашего комплексного плана работ по обеспечению прочности и, я бы сказал, по созданию конструкции самолета МС-21 вообще.
Работу мы ведем совместно с корпорацией «Иркут» и дочерним предприятием ОАК – компанией «АэроКомпозит», которая создана для проектирования и производства крупных композитных конструкций.
В ходе первого этапа работ проведены экспериментальные исследования жесткости кессона и частотные испытания в широком диапазоне частот. При этом нами исследовано изменение свойств образца после нанесения повреждений, характерных для эксплуатации самолета.
В ходе испытаний первый прототип кессона выдержал эксплуатационные нагрузки. Затем были проведены его испытания при экстремальных нагрузках. Запланированное в ходе этих тестов разрушение образца произошло в расчетном месте.
Мы впервые в ходе проекта имитировали поведение основной силовой части крыла и получили эффекты, предсказанные при проектировании. Этот важнейший результат повышает нашу уверенность в том, что все расчетные и проектные методики в целом правильно работают в совокупности с выбранной инфузионной технологией производства композитной конструкции.
Выполнив этот этап, мы смогли двигаться дальше.
Каково содержание дальнейших работ?
Всего запланированы испытания трех прототипов кессона.
Первый, о котором я сказал, полностью еще не отработан. После ремонта он будет использован для дальнейшего исследования поведения конструкции, имеющей различные повреждения, а также отремонтированные участки. Второй прототип также находится в лаборатории статических испытаний, где ведется ряд работ, связанных как с прочностью, так и с отработкой технологий стыковки композитных деталей с металлическими.
Третий прототип кессона будет испытан в лаборатории динамических испытаний с позиции усталостной прочности при эксплуатации.
Параллельно с испытаниями прототипов кессона запланирован колоссальный объем испытаний различных образцов и элементов конструкции. В целом будет испытано несколько тысяч образцов и элементов конструкции.
Затем мы просуммируем все результаты и подведем итоги, на базе которых будут приняты решения и рекомендации для дальнейших проектных работ.
В чем особенности испытаний конструкций из композиционных материалов?
Основная особенность состоит в том, что композиты, в отличие от металлов, сами являются конструкцией, причем анизотропной. В ней есть волокна углерода, связующее, укладка слоев с различной ориентацией и т.д.
Композиты обладают колоссальными потенциальными преимуществами, как, например, отсутствие коррозии, высокие ресурсные характеристики, очень высокая удельная прочность. Этот показатель для углеродных волокон – основы современных композитов – доходит до 500 кг/мм? , т.е. в 3-5 раз выше, чем у стали.
Однако реализовать и использовать эти высокие характеристики в реальных условиях конструкции достаточно сложно. Любая инновация имеет свои плюсы и минусы. Так, например, для композитов критична ударная прочность, климатические воздействия. Приходится проводить много испытаний, чтобы ответить на вопрос, как изменится прочность всех подверженных эксплуатационным повреждениям агрегатов. Причем эти повреждения могут быть и при изготовлении, и при эксплуатации.
Отсюда возникает очень большая пирамида испытаний – от элементарных образцов и небольших элементов до полноразмерной конструкции. Все они нагружаются и на растяжение, и на сжатие, и на сдвиг, и на межслойный отрыв.
Необходимо изучить характеристики прочности агрегатов при климатических воздействиях, при насыщении влагой, при взаимодействии с различными жидкостями (например, с керосином), при акустических воздействиях. Возникают и другие вопросы – например, стойкость композитов к удару молнии, методика испытаний металло-композитных конструкций.
Нам важно все это изучить и понять для конкретной конструкции.
Насколько возрастет объем испытаний при переходе от металлов к композитам?
Если просто посмотреть на характеристики типового металлического материала, которые исследуются при квалификации материалов, при сертификации, то для композиционных материалов число исследуемых характеристик больше в 2-2,5 раза.
Поскольку композиты сами по себе являются конструкцией, нам нужно знать гораздо больше параметров. Кроме того, необходимо учитывать значительные статистические разбросы, характерные для композитов.
Соответственно, на фоне существенных инноваций объем работ велик. Однако, по мере накопления опыта, верификации математических моделей, совершенствования расчетных методов, технологий он придет к какой-то разумной величине.
Прогрессу в исследованиях также будет способствовать стабилизация характеристик композитов. Это важно для конструкторов, которые могут не «закладываться» на заметный разброс параметров материала и, соответственно, сокращать объем испытаний.
Повышение доли композитов в конструкции самолетов – это тенденция?
Прототип кессона композиционного крыла самолет МС-21 (№2) в зале статических испытаний комплекса прочности ЛА ЦАГИ
Образец панели из поликарбоната и углепластика для использования в конструкциях аэроупругих моделей
Макет конструктивно подобной модели пилона двигателя МС-21 для исследования эффектов аэроупругости. Макет изготовлен по технологии быстрого прототипирования.
Композитные материалы очень активно развиваются. Это – глобальная тенденция. Наша задача – взять рациональное, оптимальное сочетание из тех материалов, которые имеются на сегодня.
Композиты – это общее название. Есть металлокомпозиты. Есть композиты не только на базе углеродных волокон, но и на основе органических.
Будущие конструкции будут комбинированными. Даже испытываемый прототип кессона содержит около 50% металла. В зависимости от характера нагружений отдельной части конструкции, отдельного агрегата мы должны из базы имеющихся материалов выбрать то, что наиболее подходит.
Движение в направлении создания новых композитов неизбежно. Они, в частности, позволяют в дальней перспективе создать «умные» материалы при внедрении в слои и волокна интеллектуальных элементов.
Однако есть очень важный момент. Если мы берем новый материал и делаем из него конструкцию, которую 50 лет отрабатывали из алюминия, то позитивный эффект не гарантирован. Конструкция должна идти навстречу новым материалам.
Недавно мы в Германии обсуждали с коллегами результаты очень интересного совместного проекта, направленного на использование композитных сетчатых изогридных конструкций в фюзеляже. Они в нашей стране активно используются в ракетной технике. Это – пример взаимодействия развития материалов и развития конструкций.
Я думаю, что мы придем к оптимальной комбинированной конструкции, но к ней и в России, и за рубежом приходится идти через исследования, эксперименты, отработку технологий, накопление опыта проектирования и серийного производства.
Как изменяется экспериментальная база ЦАГИ в связи с проектом МС-21?