Можно без особых усилий показать, что материалы ЛСД-психотерапии, загадочные и необъяснимые с точки зрения механистической науки, представляют гораздо меньшие трудности, если подходить к ним в духе квантово-релятивистской физики, теории систем и информации, кибернетики или недавних открытий в нейропсихологии и биологии. Современные исследования сознания поставляют многочисленные свидетельства, поддерживающие мировоззрение великих мистических традиций. В то же время революционное развитие других научных дисциплин в корне подрывает и дискредитирует механистическое видение мира, сужает разрыв между наукой и мистицизмом, казавшийся в прошлом абсолютным и непреодолимым. Интересно, что многие великие ученые, произведшие революцию в современной физике – Альберт Эйнштейн, Нильс Бор, Эрвин Шредингер, Вернер Гейзенберг, Роберт Оппенгеймер и Дэвид Бом, – находили свое научное мышление вполне совместимым с духовностью, с мистическим мировоззрением. В последние годы все большее сближение науки и мистицизма обсуждается во многих книгах и статьях12.

Чтобы продемонстрировать совместимость и взаимодополнительность мировоззрения, возникшего в квантово-релятивистской физике, и наблюдений, полученных в ходе исследований сознания, я дам краткий обзор концептуальной революции в физике XX века по ее исчерпывающему представлению в книге Фритьофа Капры «Дао физики» (Сарга, 1975). Прежде всего, обратим внимание на интересную параллель – возможно, не просто по совпадению, а по глубокому смыслу. Ньютоно-картезианская модель была адекватной и даже весьма успешной до тех пор, пока физики исследовали явления в мире повседневного опыта, или в «зоне средних измерений». Как только они начали совершать экскурсии за пределы обычного восприятия в микромир субатомных процессов и в макромир астрофизики, ньютоно-картезианская модель стала непригодной, возникла необходимость ее трансценденции. Аналогично этому, глубокие концептуальные и метафизические изменения автоматически происходят с ЛСД-пациентами, с теми, кто занимается медитацией, и с другими исследователями внутренних пространств, как только они эмпирически достигают трансперсональных областей. У науки, которая принимает в расчет свидетельства необычных состояний сознания, нет другого выбора, кроме как освободить себя от узких рамок ньютоно-картезианской модели.

Революционные перемены в физике, ознаменовавшие конец ньютоновской модели, начались в XIX веке знаменитыми экспериментами Фарадея и теоретическими работами Максвелла по электромагнитным явлениям. Усилиями этих двух естествоиспытателей возникло новое понятие силового поля, заменившее ньютоновское понятие силы. В отличие от ньютоновских сил, силовые поля можно исследовать вне связи с материальными телами. Это было первым значительным отклонением от ньютоновской физики, оно привело к открытию того, что свет – это быстро изменяющееся электромагнитное поле, волнами распространяющееся в пространстве. В основанной на этом открытии общей теории электромагнитных колебаний удалось свести различия между радиоволнами, видимым светом, рентгеновскими лучами и космическим излучением к разнице в частоте; все эти явления объединились под названием «электромагнитные поля».

Однако еще долгие годы электродинамика оставалась под заклятием ньютонианского мышления. Электромагнитные волны считались вибрациями очень легкой субстанции, называемой «эфиром». Эксперимент Майкельсона-Морли опроверг существование эфира, а Альберт Эйнштейн первым ясно высказался за то, что электромагнитные поля существуют сами по себе и способны распространяться в пустом пространстве. Первые десятилетия нашего столетия принесли неожиданные открытия в физике, потрясшие самые основы ньютоновской модели вселенной. Краеугольным камнем этого развития стали две статьи, опубликованные Эйнштейном в 1905 году. В первой он сформулировал принципы своей специальной теории относительности, во второй предложил новую точку зрения на природу света – позднее физики дружно переработали ее в квантовую теорию атомных процессов. Теория относительности и новая теория атома опровергли все базисные концепции ньютоновской физики: абсолютность времени и пространства, незыблемость материальной природы пространства, дефиницию физических сил, строго детерминированную систему объяснения и идеальное объективное описание явлений, не учитывающее наблюдателя.

Согласно теории относительности, пространство не трехмерно, а время не линейно; ни то, ни другое не является отдельной сущностью. Они теснейшим образом переплетены и образуют четырехмерный «пространственно-временной» континуум. Поток времени не равномерен и не однороден, как в ньютоновской модели, он зависит от позиции наблюдателей и их скорости относительно наблюдаемого события. Более того, в общей теории относительности, сформулированной в 1915 году и окончательно еще не подтвержденной экспериментально, утверждается, что присутствие массивных объектов влияет на пространство-время. Вариации гравитационного поля в разных частях Вселенной оказывают искривляющее действие на пространство, что заставляет время течь в различном темпе.

Любые измерения в пространстве и времени относительны, больше того, сама структура пространства-времени зависит от распределения материи – поэтому различие между материей и пустым пространством исчезает. Ньютоновское понятие о твердых материальных телах, движущихся в пустом пространстве с эвклидовыми характеристиками, теперь значимо только в «зоне средних измерений». В астрофизике и космологии понятие пустого пространства не имеет смысла, а развитие атомной и субатомной физики разрушило представление о твердой материи.

История субатомных исследований начинается на рубеже веков с открытия рентгеновских лучей и радиоактивных элементов. Опыты Резерфорда с альфа-частицами продемонстрировали, что атомы не являются твердыми и неделимыми единицами материи, а состоят из огромных пустот, в которых мелкие частицы – электроны – движутся вокруг ядер. При изучении атомарных процессов ученые столкнулись с несколькими парадоксами, возникавшими всякий раз, когда они пытались объяснить новые данные в рамках традиционной физики. В 20-х годах интернациональная группа физиков, в которую входили Нильс Бор, Луи Де-Бройль, Вернер Гейзенберг, Эрвин Шредингер, Вольфганг Паули и Поль Дирак, добилась успеха в поисках математического описания субатомных процессов.

Концепция квантовой теории и ее философские приложения воспринимались непросто, несмотря на то, что математический ее аппарат адекватно отражал рассматривавшиеся процессы. «Планетная модель» рассматривала атом как пустое пространство с мельчайшими частицами материи, а квантовая физика показала, что даже эти частицы не вещественны. Выяснилось, что у субатомных частиц очень абстрактные характеристики и парадоксальная, двойственная природа. В зависимости от организации эксперимента они проявляют себя иногда как частицы, а иногда как волны. Такая же двойственность наблюдалась при исследованиях природы света. В некоторых экспериментах свет проявлял свойства электромагнитного поля, в других же представал в форме отдельных квантов энергии, фотонов, не имеющих массы и всегда движущихся со скоростью света.

Тот факт, что один и тот же феномен проявляется и как частица, и как волна, конечно, нарушал аристотелевскую логику. Форма частицы подразумевает сущность, заключенную в малом объеме или в конечной области пространства, тогда как волна распространяется по огромным областям пространства. В квантовой физике эти два описания взаимоисключительны, но равно необходимы для полного понимания рассматриваемых явлений. Это нашло свое выражение в новом логическом приспособлении, которому H. Бор (Bohr, 1934; 1958) дал название принципа дополнительности.

Этот новый упорядочивающий принцип не разрешает парадокс, а только вводит его в систему науки. В нем принимается логическое противоречие двух аспектов реальности, взаимоисключающих и в то же время одинаково необходимых для исчерпывающего описания явления. Согласно Бору, это противоречие является результатом неконтролируемого взаимодействия между объектом наблюдения и наблюдательными средствами. В области квантовых взаимодействий не может быть речи о причинности и полной объективности в обычном их понимании. То, как разрешилось в квантовой теории кажущееся противоречие между понятиями частицы и волны, поколебало самые основы механистической теории. На субатомном уровне материя не существует с определенностью в данном конкретном месте, а скорее «проявляет тенденцию к существованию», внутриатомные события не происходят с определенностью в определенное время определенным способом, а скорее «выказывают тенденцию случаться». Эти тенденции могут быть выражены как математическая вероятность с характерными волновыми свойствами.