Рис. 83. Яйцо варится в бумажной кастрюле.
Взгляните на рис. 83: яйцо варится в воде, налитой в бумажный колпак! “Но ведь бумага сейчас загорится и вода зальет лампу”, — скажете вы. Попробуйте же сделать опыт, взяв для него плотную пергаментную бумагу и надежно прикрепив ее к проволоке. Вы убедитесь, что бумага нисколько не пострадает от огня. Причина в том, что вода может быть нагрета в открытом сосуде только до температуры кипения, т.е. до 100°; поэтому нагреваемая вода, обладающая к тому же большой теплоемкостью, поглощая избыток теплоты бумаги, не дает ей нагреться заметно выше 100°, т. е. настолько, чтобы она могла воспламениться. (Практичнее будет пользоваться небольшой бумажной коробкой в форме, изображенной на рис. 84.) Бумага не загорается, если даже пламя лижет ее.
К тому же роду явлений относится и печальный опыт, который невольно проделывают рассеянные люди, ставящие самовар без воды: самовар распаивается. Причина понятна: припой сравнительно легкоплавок, и только тесное соседство воды спасает его от опасного повышения температуры. Нельзя также нагревать запаянные кастрюли без воды. В старых пулеметах Максима нагревание воды предохраняло оружие от расплавления.
Вы можете, далее, расплавить, например, свинцовую пломбу в коробочке, сделанной из игральной карты. Надо только подвергать действию пламени именно то место бумаги, которое непосредственно соприкасается со свинцом: металл, как сравнительно хороший проводник тепла, быстро отнимает от бумаги тепло, не давая ей нагреться заметно выше температуры плавления, т. е. 335° (для свинца); такая температура недостаточна для воспламенения бумаги.
Рис. 84. Бумажная коробка для кипячения воды.
Хорошо удается также следующий опыт (рис. 85): толстый гвоздь или железный (еще лучше медный) прут обмотайте плотно узкой бумажной полоской, наподобие винта. Затем внесите прут с бумажной полоской в пламя. Огонь будет лизать бумагу, закоптит ее, но не сожжет, пока прут не раскалится. Разгадка опыта — в хорошей теплопроводности металла; со стеклянной палочкой подобный опыт не удался бы. Рис. 86 изображает сходный опыт с “несгораемой” ниткой, туго намотанной на ключ.
Рис. 85. Несгораемая бумажка.
Рис. 86. Несгораемая нитка.
На гладко натертом полу легче поскользнуться, нежели на обыкновенном. Казалось бы, то же самое должно происходить на льду, т. е. гладкий лед должен быть более скользок, нежели лед бугорчатый, шероховатый.
Но если вам случалось везти нагруженные ручные санки через неровную, бугристую ледяную поверхность, вы могли убедиться, что, вопреки ожиданиям, сани проскальзывали по такой поверхности заметно легче, чем по гладкой. Шероховатый лед более скользок, чем зеркально гладкий! Это объясняется тем, что скользкость льда зависит главным образом не от гладкости, а от совершенно особой причины: от того, что температура плавления льда понижается при увеличении давления.
Разберем, что происходит, когда мы катаемся в санях или на коньках. Стоя на коньках, мы опираемся на очень маленькую площадь, всего в несколько квадратных миллиметров. И на эту небольшую площадь целиком давит вес нашего тела. Если вы вспомните сказанное в главе второй о давлении, то поймете, что конькобежец давит на лед со значительной силой. Под большим давлением лед тает при пониженной температуре; если, например, лед имеет температуру — 5°, а давление коньков понизило точку плавления льда, попираемого коньками, более чем на 5°, то эти части льда будут таять [Теоретически можно вычислить, что для понижения точки таяния льда на 1° требуется весьма значительное давление в 130 кг на квадратный сантиметр. Производят ли сани или конькобежец такое огромное давление на лед? Если распределить вес саней (или конькобежца) на поверхность полозьев (или коньков), то получатся числа гораздо меньшие. Это доказывает, что ко льду прилегает вплотную далеко не вся поверхность полоза, а лишь незначительная часть ее]. Что же получается? Теперь между полозьями коньков и льдом находится тонкий слой воды, — неудивительно, что конькобежец скользит. И как только он переместит ноги в другое место, там произойдет то же самое. Всюду под ногами конькобежца лед превращается в тонкий слой воды. Такими свойствами из всех существующих тел обладает только лед; один советский физик назвал его “единственным скользким телом в природе”. Прочие тела гладки, но не скользки.
[При теоретическом расчете предполагается, что при плавлении и лед, и вода находятся под одинаковым давлением. Автор же описывает примеры, когда вода, образующаяся при плавлении, находится при атмосферном давлении. В этом случае требуется меньшее давление для понижения точки таяния льда. — Прим. ред.]
Теперь мы можем вернуться к вопросу о том, гладкий или шероховатый лед более скользок. Мы знаем, что один и тот же груз давит тем сильнее, чем на меньшую площадь он опирается. В каком же случае человек оказывает на опору большее давление: когда он стоит на зеркально гладком или на шероховатом льду? Ясно, что во втором случае: ведь здесь он опирается лишь на немногие выступы и бугорки шероховатой поверхности. А чем больше давление на лед, тем обильнее плавление и, следовательно, лед тем более скользок (если только полоз достаточно широк; для узкого полоза коньков, врезающегося в бугорки, это неприложимо — энергия движения расходуется здесь на срезывание бугорков).
Понижением точки таяния льда под значительным давлением объясняется и множество других явлений обыденной жизни. Благодаря этой особенности льда отдельные куски его смерзаются вместе, если их сильно сдавливать. Мальчик, сжимая в руках комья снега при игре в снежки, бессознательно пользуется именно этим свойством ледяных крупинок (снежинок) смерзаться под усиленным давлением, понижающим температуру их таяния. Катая снежный ком для “снежной бабы”, мы опять-таки пользуемся указанной особенностью льда: снежинки в местах соприкосновения, в нижней части кома, смерзаются под тяжестью надавливающей на них массы. Вы понимаете теперь, конечно, почему в сильные морозы снег образует рассыпающиеся снежки, а “баба” плохо лепится. Под давлением ног прохожих снег на тротуарах постепенно уплотняется в лед: снежинки смерзаются в сплошной пласт.
Случалось ли вам задумываться над тем, как образуются ледяные сосульки, которые мы часто видим свешивающимися с крыш?
В какую погоду образовались сосульки: в оттепель или в мороз? Бели в оттепель, то как могла замерзнуть вода при температуре выше нуля? Если в мороз, то откуда могла взяться вода на крыше?
Вы видите, что задача не так проста, как кажется сначала. Чтобы могли образоваться ледяные сосульки, нужно в одно и то же время иметь две температуры: для таяния — выше нуля и для замерзания — ниже нуля.
На самом деле так и есть: снег на склоне крыши тает, потому что солнечные лучи нагревают его до температуры выше нуля, а стекающие капли воды у края крыши замерзают, потому что здесь температура ниже нуля. (Конечно, мы говорим не о том случае образования сосулек, который обусловлен теплотой отапливаемого под крышей помещения.)
Рис. 87. Лучи Солнца греют наклонную крышу сильнее, чем горизонтальную земную поверхность (числа указывают величину углов).
Представьте такую картину. Ясный день; мороз всего в 1 — 2 градуса. Солнце заливает все своими лучами; однако же эти косые лучи не нагревают землю настолько, чтобы снег мог таять. Но на склон крыши, обращенный к Солнцу, лучи падают не полого, как на землю, а круче, под углом, более близким к прямому. Известно, что освещение и нагревание лучами тем больше, чем больший угол составляют лучи с плоскостью, на которую они падают. (Действие лучей пропорционально синусу этого угла; для случая, изображенного на рис. 87, снег на крыше получает тепла в 2,5 раза больше, нежели равная площадь снега на горизонтальной поверхности, потому что синус 60° больше синуса 20° в 2,5 раза.) Вот почему скат крыши нагревается сильнее и снег на нем может таять. Оттаявшая вода стекает и каплями свисает с края крыши. Но под крышей температура ниже нуля, и капля, охлаждаемая к тому же испарением, замерзает. На замерзшую каплю натекает следующая, также замерзающая; затем третья капля, и т. д.; постепенно образуется маленький ледяной бугорок. В другой раз при такой же погоде эти ледяные наплывы еще удлиняются, и в результате образуются сосульки, вырастающие наподобие известковых сталактитов в подземных пещерах. Так возникают сосульки на крышах сараев и вообще неотапливаемых помещений.