Возник взгляд — его со всей решительностью высказал «отец кибернетики» Н. Винер, что мы живем в «вероятностной вселенной»*. Здесь своеобразную перефразировку получила другая идея того же Лейбница — идея о множественности «возможных миров».

В настоящее время, во всяком случае, бесспорно, что на многие реальные процессы следует смотреть как на формализуемые, детерминируемые, происходящие по четким, однозначно понимаемым правилам именно «в принципе». Но быть формализованным, детерминированным в принципе — это не то же самое, что быть фактически представленным на языке какой-то формальной системы или быть детерминированным конкретным, доступным для выявления и формулировки алгоритмом. Да и сами формализуемость, детерминистичность, регулярность поведения — словом, формальность и алгоритмичность — могут быть разной «силы». Поэтому часто говорят о формализуемости и детерминируемости различной степени и для исследования более слабых их вариантов используют разнообразный «нелогический» математический аппарат — теорию игр, исследование операций, теорию массового обслуживания, теорию статистических решений, математическую теорию планирования эксперимента — аппарат, так или иначе связанный с теоретико-вероятностными представлениями и методами.

Необходимость учета более слабых форм логической детерминированности вызвала к жизни исследования различного, рода ослаблений понятия алгоритма (вычислимости). Возникли теоретические концепции «недетерминистских» и «расплывчатых» алгоритмов. По своей логической основе эти теории оказались связанными уже не с двузначной логикой —логикой истины и лжи, которая рассматривалась в этой книге, а с логиками многозначными и беско-нечнозначными. В многозначных логиках используются не два, а более значений истинности; в самой «простой» из них истинностных значений оказывается три — истинность, ложность и неопределенность. В бесконечнозначных логиках предполагается счетно-бесконечное (то есть перечислимое числами натурального ряда) или даже контитуальное множество значений истинности. Такие логики, грубо говоря, моделируют свойство человеческих суждений располагаться на «непрерывной» шкале правдоподобия (достоверность, правдоподобие различной степени, абсолютная ложность).

* Винер. Кибернетика и общество. М., 1958 (см. Предисловие «Идея вероятностной Вселенной»).

Отказ от принципа обязательной дихотомии «истинное-ложное» явился важным завоеванием математико-логической мысли XX столетия, отражающим диалектическую при. роду человеческого познания. Логика, продолжая развивать и углублять свой формальный аппарат (который становится все более сложным, мощным и разнообразным), таким образом более решительно, чем ранее, обращается к учету свойств реального мышления. Это проявляется, в частности, в появлении таких ослаблений понятия алгоритма (вычислимости), которые связаны с задачей отображения в логике «человеческого фактора». Одним из таких ослаблений является понятие предписания алгоритмического типа, предполагающее, что «исполнительным устройством» для алгоритмов является человек с присущими ему ограничениями и свойствами. Не останавливаясь на всех этих вопросах более подробно, мы отсылаем читателя к имеющейся на этот счет литератутуре*.

Отметим также еще один существенный момент. Пересмотр «традиционных» представлений о логической детерминированности, связанные с этим расширение понятия алгоритмического процесса и появление «новых логик» обусловлены не только возрастающей ролью «человеческого фактора». Даже те отрасли знания, которые занимаются исключительно — или почти исключительно—«мертвой» природой (и прежде всего физика), сталкиваются ныне с ситуацией, когда говорить об алгоритмическом познании объектов приходится в каком-то новом, не до конца еще ясном смысле. Уяснение назревающего нового представления о логической детерминированности составляет теперь одну из самых привлекательных для пытливого исследователя проблем. Эта проблема порождает множество более частных вопросов.

Что такое язык вообще и каковы особенности научных языков? Как следует понимать отображение реальности в понятийной теории, коль скоро она выражена некоторой знаковой системой? В каком смысле такая теория предсказывает новые явления? Как в логическом плане соотносятся между собой «теоретические» понятия — понятия дедуктивных наук — и понятия «эмпирические», формирующиеся в опытно-экспериментальном познании? Комплекс подобных вопросов оказывает сильное влияние на развитие теории знаковых систем — семиотики и многие аспекты методологии науки.

В задачи данной книги не входит подробный философский анализ представлений о логической дедукции и алгоритмической процедуре как инструментах познания. Поэтому и в данном случае мы ограничимся фактической стороной дела и сравним то представление о научном описании Вселенной, которое господствовало сто — двести лет назад, с современными представлениями.

Открытие И. Ньютоном закона всемирного тяготения и поразительное по своей точности подтверждение этого закона последующими астрономическими наблюдениями привело к концепции, которая получила название «лапласовского детерминизма», поскольку была образно и четко сформулирована французским математиком, астрономом и физиком Пьером Лапласом. Вот его знаменитые слова:

«Мы должны рассматривать существующее состояние Вселенной как следствие предыдущего состояния и как причину последующего. Ум, который в данный момент знал бы все силы, действующие в природе, и относительное положение всех составляющих ее сущностей, если бы он был еще столь обширным, чтобы ввести в расчет все эти данные, охватил бы единой формулой движения крупнейших тел Вселенной и легчайших атомов. Ничего не было бы для него недостоверным, и будущее, как и прошедшее, стояло бы перед его глазами»[*].

В этом рассуждении присутствует не только непререкаемая убежденность в принципиальной жесткой детермировакности явлений природы, но и глубокая уверенность в возможности — правда, тоже принципиальной — такой теории, которая абсолютно точно отражает развитие событий во Вселенной, то есть теории, представляющей собой знаковую модель, изоморфную реальности - такая уверенность звучит в ссылке на «формулу», ибо Лаплас, будучи математиком, подразумевал под последней, конечно, математическое соотношение — соотношение, содержащее в качестве переменных «наблюдаемые» физические параметры: координаты, импульсы, время; подставляя в эту «формулу» любое значение временной переменной, «всеобъемлющий ум» мог бы, считал Лаплас. вычислить значение других переменных, то есть узнать положение и скорость любой частицы материи в соответствующий момент времени.

В лапласовском подходе нельзя не обнаружить сходства с изложенным в гл. II проектом Лейбница. Роль «универсальной характеристики» — языка, на котором, по замыслу последнего, в принципе станет возможной запись всей информации о сущем, Лаплас отводит языку дифференциальных уравнений, а роль формального аппарата, позволяющего оперировать с выражениями этого языка («исчисления умозаключений»)—физическим законам, облеченным в математическую форму. В силу конкретности этого представления о научном языке и аппарате выводимости лапласовская концепция произвела гораздо более сильное впечатление на умы, чем лейбницевская. Она, казалось, открывала ясный путь к алгоритмизированному познанию всех аспектов мира (включая живую материю, которая, как считалось, в конечном счете управляется физико-химическими законами и ничем иным).

В концепции Лапласа оставался, правда, один не совсем ясный пункт. Для окончательного ее утверждения необходимо было принять тезис о том, что физических законов — законов основных, исходных, из «суперпозиции» которых строятся все остальные закономерности действительности, существует не так уж много и что все они имеют сравнительно простое математическое выражение; кроме того, нужно было допустить абсолютную строгость каждого физического закона и то, что фундаментальные законы с полной определенностью могут быть установлены с помощью опыта. Все эти тезисы во времена Лапласа не имели прямых подтверждений, но, вероятно, мало кто из представителей «точного естествознания» сомневался тогда в их справедливости.