Такие телескопы могли бы произвести революцию в астрономии.

Хорошо проработанного проекта у ученых пока нет, но они готовы им заняться. Зато уже есть образец зеркала диаметром 30 см, изготовленный по предложенной технологии. Для этого из нанотрубок, смолы и смеси пород, имитирующей лунную пыль, ученые приготовили нечто похожее на бетон и отлили из него заготовку.

Оказывается, свойства такого бетона вполне подходят для зеркал телескопов. Затем на поверхность заготовки наносят эпоксидную смолу и начинают быстро вращать так, чтобы смола растеклась в идеальный параболоид. Параболоид покрывают тонким отражающим слоем алюминия, и зеркало готово.

Например, для изготовления зеркала диаметром 2,4 м, как у орбитального телескопа Hubble, потребуется 600 кг лунной пыли, 60 кг эпоксидной смолы, 6 кг углеродных нанотрубок и всего несколько грамм алюминия. То есть пыль дает очевидную экономию, так как на Луну придется везти почти на порядок меньше материалов.

А какие захватывающие перспективы открываются! Поскольку на Луне сила тяжести в шесть раз меньше, чем на Земле, становится реальным изготовление телескопов с диаметром зеркала до полусотни метров, тогда как, например, установленный на Канарских островах гигантский телескоп имеет зеркало диаметром 10,4 м.

Стабильная лунная поверхность и отсутствие атмосферы позволит такому телескопу легко разглядеть у ближайших звезд планетные системы, надежно измерять расстояния до космических объектов и в целом лучше понять эволюцию Вселенной. Да и многие другие области астрофизики выйдут на качественно иной уровень.

Однако нашлось и немало скептиков. В современном телескопе и помимо зеркала хватает массивных деталей, которые не получится изготовить на Луне. Так что смету строительства лунной обсерватории пока невозможно толком составить. По-видимому, спутник Земли в первую очередь может быть интересен даже не для оптической, а для радиоастрономии. На обратной стороне Луны нет радиопомех от земных источников, и установленный там радиотелескоп сумеет многое рассказать ученым. ГА

Холодный расчет

По мере совершенствования техпроцессов изготовления чипов повышается и степень интеграции компонентов, что позволяет получать более производительные устройства меньшего размера. Однако вместе с тем все острее встает проблема эффективного отвода тепла. Оригинальный выход нашла корпорация IBM, предложившая интегрировать внутрь процессоров системы водяного охлаждения.

Сейчас процессорные ядра размещаются в одной плоскости, а будущее, по мнению Голубого гиганта, за многослойными микрочипами, в которых те же элементы упакованы в хайтек-"бутерброд". Это позволит существенно повысить быстродействие за счет сокращения длины соединений между компонентами.

Журнал "Компьютерра" №739 - _739-60.jpg

Правда, для чипов нового типа обычные системы охлаждения (радиатор плюс кулер) уже не подойдут, поскольку слои микросхем будут нагревать друг друга изнутри. Поэтому IBM предлагает встраивать в чипы тончайшие каналы, по которым будет прокачиваться вода. Подобно тому, как кровеносная система забирает углекислый газ из каждой клетки тела, водяные капилляры, по диаметру сравнимые с человеческим волосом, будут отводить тепло от всех элементов многослойной микросхемы. Изолировать каналы от компонентов чипа предлагается при помощи кремниевых стенок и слоя диоксида кремния.

Новая система охлаждения разрабатывается специалистами IBM совместно с немецкими исследователями из Института Фраунгофера. Вода, подчеркивают ученые, в четыре тысячи раз лучше отводит тепло, нежели воздух, поэтому, проходя между слоями чипа, тончайшие трубочки с жидкостью смогут забирать до 180 Вт тепловой энергии с одного квадратного сантимера. В случае с крупными вычислительными комплексами и суперкомпьютерами, насчитывающими тысячи процессоров, нагретая вода может быть пущена в систему отопления офисных помещений или на другие бытовые нужды. Таким образом, удастся не только обеспечить эффективное охлаждение техники, но и снизить энергозатраты дата-центров.

Впрочем, первые микрочипы с капиллярным охлаждением появятся в лучшем случае через пять-десять лет - для коммерческого применение технологию еще предстоит довести до ума. ВГ

Два в одном

Новый метод изучения электронной и магнитной структуры нескольких атомных слоев вблизи поверхности материала предложили японские физики из Института науки и технологии Нара (Nara Institute of Science and Technology). Метод, названный дифракционной спектроскопией, обещает подсобить разработчикам, конструирующим винчестеры с перпендикулярной записью информации.

В жестких дисках плотность записи вскоре обещает превысить один терабайт на квадратный дюйм пластины. При такой плотности размеры одного бита составят около десяти нанометров. А на подобных масштабах должны доминировать поверхностные магнитные эффекты, которые пока плохо изучены. И без детального понимания особенностей магнитных свойств различных материалов вблизи поверхности инженерам уже не обойтись.

До сих пор в арсенале ученых не было подходящих методов исследования атомных слоев под поверхностью материала. Например, весьма популярная сканирующая туннельная спектроскопия позволяет проанализировать только строение самой поверхности, то есть одного-единственного верхнего слоя атомов. Чтобы проникнуть глубже, японцы реализовали нетривиальную комбинацию двух известных методов - метода дифракции Оже-электронов и спектроскопии поглощения рентгеновского излучения.

Кванты рентгеновского излучения с достаточно большой энергией сначала выбивают электроны из внутренних электронных оболочек атомов. В образовавшиеся дырки падают электроны из внешних электронных оболочек. При этом избыток энергии от падения уносится за счет испускания атомом с внешних электронных оболочек других Оже-электронов. Поскольку эти процессы существенно зависят от энергетических уровней электронов в атомах и ориентации спинов частиц, их анализ позволяет детально разобраться в электронной и магнитной структуре поверхностных слоев материала.