Группы уже доказали, чего они стоят, когда была решена вековая загадка — вопрос о разрешимости уравнений пятой степени. Вскоре стало ясно, что тот же круг идей позволяет разобраться и с несколькими другими задачами, неразрешимыми в течение веков. При этом не всегда привлекалась именно теория групп как таковая — порой требовалось рассуждать так, как рассуждали Абель, Галуа и их последователи. И даже когда казалось, что группы не используются, они на самом деле находились совсем рядом, под самой поверхностью вещей.

Среди нерешенных задач, доставшихся потомкам в наследство от греческих геометров, три приобрели вызывающую известность — задача о трисекции угла, задача об удвоении куба и задача о квадратуре круга. Даже сегодня трисекция угла и квадратура круга привлекают к себе внимание многочисленных любителей, которые, по-видимому, не вполне охватили своим умом то обстоятельство, что когда математики говорят «невозможно», то именно это и имеется в виду. Удвоение куба несколько отстает по уровню популярности.

Об этих трех задачах часто говорят как о «трех задачах Античности», но такое определение создает преувеличенное представление об их важности. Из-за него они как будто стоят в одном ряду с главнейшими загадками в истории, такими как Последняя теорема Ферма, на которую не удавалось дать ответ в течение более 350 лет. Однако отличие здесь в том, что все ясно сознавали: Последняя теорема Ферма — нерешенная задача, причем можно конкретно указать, когда именно она была впервые поставлена в математической литературе. Все математики были в курсе относительно не только самой задачи, но и предполагаемого ответа, а также относительно того, кто первым поставил этот вопрос.

Греческие задачи — иные. Их не найти у Эвклида в перечне нерешенных, требующих внимания задач. Они существовали главным образом по умолчанию, как очевидные попытки обобщить полученные ранее успешные результаты, но почему-то Эвклид предпочитал их не упоминать. Почему? Потому что никто не знал, как взяться за их решение. Приходило ли грекам на ум, что они могут вовсе не иметь решения? Если и так, то никто не поднимал по этому поводу шума. Без сомнения, таким людям как Архимед приходило в голову, что эти задачи невозможно решить, используя циркуль и линейку, поскольку он разработал альтернативные методы, однако нет никаких свидетельств, что сам по себе вопрос о возможности построения представлялся Архимеду важным.

Этот вопрос приобрел важность позднее. Отсутствие решений этих задач свидетельствовало о серьезных пробелах в достигнутом человечеством понимании геометрии и алгебры; они вошли в моду как «фольклорные» задачи, известные профессионалам через некое подобие культурного осмоса. К тому времени как было получено их решение, они приобрели ауру исторической и математической значительности. Их решение воспринималось как важнейший прорыв — в особенности это касалось квадратуры круга. И ответ во всех трех случаях был один и тот же: «невозможно». Невозможно с использованием традиционных инструментов — циркуля и линейки.

Такая ситуация может показаться достаточно негативной. На протяжении большей части жизни люди решают проблемы и преодолевают трудности с помощью самых разнообразных средств, какие только подворачиваются под руку. Если высокое здание нельзя построить из кирпича и раствора, инженеры используют стальную арматуру и железобетон. Никто не стяжал себе славы доказательством того, что кирпичи не подходят для данной стройки.

Математика устроена несколько иначе. Ограничения, присущие используемым инструментам, часто так же важны, как и успехи в их применении. Важность математического вопроса часто зависит не от ответа как такового, а от того, почему ответ оказывается правильным. Так обстояло дело и с тремя задачами Античности.

Гроза всех и вся трисекторов родился в Париже в 1814 году, а звали его Пьер Лоран Ванцель. Отец его был сначала армейским офицером, а потом профессором прикладной математики в Специальной коммерческой школе. Пьер опережал в своем развитии других детей; Адемар Жан Клод Барр де Сен-Венан, который знал Ванцеля, писал, что мальчик демонстрировал «потрясающие способности к математике — предмету, о котором он читает с огромным интересом. Вскоре он превзошел даже своего учителя, который обращался за помощью к девятилетнему Ванцелю, когда испытывал трудности при решении задач».

В 1828 году Пьер поступил в Коллеж Карла Великого. В 1831-м он был первым учеником и по французскому, и по латыни, а также показал первый результат на вступительных экзаменах как в Политехническую школу, так и на естественный факультет того, что сейчас называется Нормальной школой, — ранее такого не удавалось добиться никому. Его интересовало буквально все — математика, музыка, философия, история, и ничто не привлекало сильнее, чем жаркие, ожесточенные споры.

В 1834 году он обратился к инженерному делу, посещая занятия в Школе мостов и дорог. Но вскоре признался своим друзьям, что инженер из него выйдет «не более чем посредственный». Он решил, что на самом деле хочет преподавать математику, и оставил занятия инженерным делом. Такое резкое переключение принесло свои плоды: в 1838 году он начал читать лекции по анализу в Политехнической школе, а к 1841-му стал еще и профессором прикладной механики в своей старой инженерной школе. Сен-Венан говорит нам, что Пьер «обыкновенно работал в течение вечера, не ложась спать до поздней ночи, а затем читал, оставляя себе лишь несколько часов неспокойного сна и при этом злоупотребляя кофе и опиумом, а до своей женитьбы еще и неправильно и нерегулярно питаясь». Женился он на дочери своего бывшего учителя латыни.

Ванцель изучал работы Руффини, Абеля, Галуа и Гаусса, высказывая большой интерес к теории уравнений. В 1837 году его работа «О средствах, позволяющих установить, разрешима ли геометрическая задача с помощью циркуля и линейки» вышла в Лиувиллевском Journal de Mathematiques Pures et Appliquees. Вопрос о возможности построения рассматривался в ней начиная с того места, на котором остановился Гаусс. Ванцель умер в 1848 году в возрасте 33 лет — вероятно, в результате чрезмерной нагрузки из-за избытка преподавания и административных обязанностей.

В вопросах о трисекции угла и удвоении куба данные Ванцелем доказательства невозможности напоминают эпическую работу Гаусса о правильных многоугольниках, только являются намного более простыми. Я начну с задачи об удвоении куба, в которой суть дела очень наглядна. Можно ли циркулем и линейкой построить отрезок длины 3v2?

Выполненный Гауссом анализ правильных многоугольников основан на идее, что любое геометрическое построение сводится к решению ряда квадратных уравнений. По существу, он считает это само собой разумеющимся, поскольку это алгебраически следует из свойств линий и окружностей. Некоторые не слишком сложные алгебраические выкладки позволяют заключить, что для любой допускающей построение величины ее «минимальный многочлен» — простейшее уравнение, которому она удовлетворяет — имеет степень, равную степени двойки[29]. Это уравнение может быть линейным, квадратным, иметь степень 4, 8, 16, 32, 64… — одну из степеней числа 2.

С другой стороны, число 3v2 удовлетворяет кубическому уравнению x3 ? 2 = 0, и это[30] и есть его минимальный многочлен. Его степень равна 3, что не есть степень числа 2. Поэтому допущение о возможности удвоения куба с использованием циркуля и линейки в силу безупречной логики ведет к заключению, что 3 есть степень числа 2. Это очевидным образом неверно. Тем самым, методом reductio ad absurdum показано, что интересующего нас построения не существует.

Трисекция угла невозможна по схожим причинам, однако доказательство тут немного сложнее.

Во-первых, некоторые углы можно точно разделить на три части. Хороший пример дается углом 180°, который при делении на три части дает 60° — угол, который можно построить при построении правильного шестиугольника. Таким образом, доказательство невозможности следует начать с выбора некоторого другого угла и с доказательства, что этот угол нельзя разбить на три равные части. Проще всего взять уже появлявшийся у нас угол 60°. Одна треть от него составляет 20°, и мы покажем, что угол 20° построить циркулем и линейкой нельзя.

вернуться

29

На тот случай, если у читателя накопилось недоумение по поводу «перегрузки» слова «степень», признаем очевидное — употребительных слов в русском языке несколько меньше, чем в английском, поэтому приходится смириться с тем, что «степень» обозначает и степень уравнения (например, x3 + x + 1 = 0 — уравнение третьей степени), и степень числа (например, 81 есть 3 в четвертой степени). (Примеч. перев.)

вернуться

30

Левая часть этого уравнения. (Примеч. перев.)