Истина в пределе. Анализ бесконечно малых - i_019.png

Эти приближенные вычисления аналогичны тем, что используются сегодня при расчете площадей кривых в полярных координатах с помощью интегралов, и абсолютно эквивалентны разбиению площади под графиком кривой на прямоугольники при определении на заданном интервале определенного интеграла функции.

Именно по этой причине Архимед считается одним из авторов первых, примитивных аналогов интегрального исчисления.

Однако существует и другая причина, по которой Архимед удостоился этого почетного звания. К сожалению, эта причина никак не повлияла на математиков последующих эпох. Речь идет об утерянном трактате Архимеда «Метод».

Эвристические рассуждения Архимеда, приводимые в этой книге, также предшествовали созданию интегрального исчисления. Похожие идеи появились в математике лишь спустя две тысячи лет после Архимеда, в XVII веке. Идея Архимеда противоречила аристотелеву отрицанию актуальной бесконечности.

Его революционная гипотеза состояла в том, что площадь рассматривалась как совокупность отрезков, а объем — как совокупность площадей. Так, прямоугольник представлялся как совокупность отрезков, параллельных его стороне, а цилиндр — как совокупность кругов, параллельных его основанию. Эти совокупности обязательно должны были быть бесконечными — здесь и появляется актуальная бесконечность, которую отрицал Аристотель.

ПАЛИМПСЕСТ АРХИМЕДА

В 1906 году датский эрудит Йохан Людвиг Гейберг обнаружил в Константинополе палимпсест — древнюю рукопись, где сохранились следы более ранней рукописи с трудами Архимеда. Поверх этого математического трактата был написан молитвенник для воскресных служб и других христианских праздников. Среди найденных работ была и ранее неизвестная — «Метод». Судя по особенностям почерка, рукопись относится примерно к 975 году н. э., а религиозные тексты, написанные поверх нее, датируются примерно 1229 годом.

Истина в пределе. Анализ бесконечно малых - i_020.jpg
ЗНАЧЕНИЕ БЕСКОНЕЧНОСТИ

Архимед также был первым греческим математиком, вычислившим сумму бесконечного числа слагаемых. Он рассматривал следующую сумму:

Истина в пределе. Анализ бесконечно малых - i_021.png

Ее требовалось рассчитать, чтобы определить площадь, ограниченную участком параболы. Несмотря на бесконечное число слагаемых (все они являются степенями 1/4), значение суммы конечно. Чтобы вычислить его, Архимед применил следующий прием: он умножил сумму на 1 - 1/4. Получим:

Истина в пределе. Анализ бесконечно малых - i_022.png

Теперь разделим результат на (1 - 1/4). Так как 1 - 1/4 = 3/4, при делении получим:

Истина в пределе. Анализ бесконечно малых - i_023.png

Тот факт, что сумма бесконечного числа слагаемых равна конечному числу, доказывает, почему Ахиллес в действительности сможет догнать черепаху в знаменитой апории Зенона: сумма бесконечного числа временных интервалов, каждый из которых равен половине предыдущего, является конечной.

* * * 

Как мы уже говорили, эта идея снова появилась в математике лишь в XVII веке, в работах Бонавентуры Кавальери, Грегуара де Сен-Венсана и других, о чем мы расскажем позднее. Этим математикам были известны труды Архимеда, которые были напечатаны примерно в середине XVI века, но не «Метод», поэтому они были вынуждены заново открыть этот прием, сыгравший основную роль в появлении исчисления.

Истина в пределе. Анализ бесконечно малых - i_024.png
Согласно хроникам, Архимед погиб от рук солдата при захвате Сиракуз римлянами в 212 году до н. э. На иллюстрации — мозаика, найденная на раскопках Помпеи.

От Архимеда до XVII века

Лишь в XVII веке математики овладели приемами, описанными в трудах Архимеда, что ускорило появление анализа бесконечно малых. Следует упомянуть, что до того ученые Средневековья и эпохи Возрождения совершили несколько открытий, без которых было бы невозможно появление математического анализа. Однако важнейшие из них не связаны напрямую с исчислением, поэтому мы расскажем о них лишь вкратце. Речь идет в первую очередь о потере и повторном обретении и освоении наследия древних греков. Ключевую роль также сыграло распространение по всей Европе индийской системы счисления. Этот длительный и непростой процесс начался в X веке, а позднее, в XIII—XVI веках, на севере Италии возникли школы абака — образовательные центры для тех, кто занимался торговлей.

В конце XVI века десятичная система счисления также начала применяться для записи рациональных и иррациональных чисел. Решающую роль в ее распространении наряду с Франсуа Виетом (1540—1603) сыграл Симон Стевин (1548—1620), хотя использованная им нотация была не совсем удобной. Стевин, уроженец бельгийского города Брюгге, развил свою идею по причинам практического характера: «Десятичная система счисления есть класс арифметики, в основе которого лежит идея о прогрессии с основанием 10, где используются арабские цифры так, что в этой системе может быть записано любое число; и любая операция, с которой мы имеем дело в торговле, может быть выполнена с помощью только целых чисел, без использования дробей». Он предложил унифицировать единицы мер и весов, а также денежные единицы с применением новой системы счисления, но эта идея была воплощена в жизнь лишь после Великой французской революции.

Некоторое время спустя идее Стевина последовали другие авторы, которые использовали современную нотацию с точкой (или запятой) для отделения десятичной части от целой. Среди них был шотландский барон Джон Непер (1550—1617), один из создателей логарифмов. Логарифмы появились в начале XVII века и были тесно связаны с открытием анализа бесконечно малых. Независимо от Непера логарифмы придумал и швейцарец Иост Бюрги (1552—1632). Изначально они использовались как вспомогательные функции в числовых расчетах, чтобы упростить умножение больших чисел в астрономических вычислениях. Нетрудно представить, сколько времени нужно было потратить на умножение множества подобных чисел и сколь велик был риск ошибиться. Джон Непер писал: «Ничто не причиняет столько проблем при занятиях математикой и не делает вычисления столь неприятными и затруднительными, как умножение, деление и извлечение квадратных и кубических корней из больших чисел. Операции эти помимо потери времени в большинстве случаев являются источником ошибок».

Чтобы упростить умножение больших чисел, в то время использовался метод под названием простаферезис. В его основе лежала тригонометрическая формула, с помощью которой произведение преобразовывалось в сумму. По сути, Джон Непер создал логарифмы с целью упростить этот метод: ему были нужны таблицы, с помощью которых можно было бы напрямую преобразовывать произведения в суммы.

Метод простаферезиса заключается в следующем. Допустим, мы хотим перемножить два больших числа n и m. Пусть они состоят из восьми цифр каждое — стандартная ситуация для астрономических расчетов тех времен. Для этого найдем в таблице значений косинусов два числа а и b такие, что n = cos a, m = cos b. Затем с помощью таблицы определим значения cos (a — b) и cos (a + b), после чего применим следующую формулу:

Истина в пределе. Анализ бесконечно малых - i_025.png

Если бы мы выполняли умножение напрямую, нам нужно было бы последовательно восемь раз умножить первое число на каждую цифру второго, после чего сложить восемь полученных чисел из восьми или девяти цифр каждое. С помощью вышеприведенной формулы и тригонометрических таблиц мы свели умножение к трем операциям сложения и простому делению на 2.