Для развития активной реакции кислорода с большинством простых и сложных веществ нужно нагревание — чтобы преодолеть потенциальный барьер, препятствующий химическому процессу. Энергетическая «добавка» (энергия активации) в разных реакциях нужна разная. С фосфором кислород активно реагирует при нагревании последнего до 60, с серой — до 250, с водородом — больше 300, с углеродом (в виде графита) — при 700 — 800°С. Правда, есть вещества, например окись азота, соединения одновалентной меди и, к счастью, гемоглобин крови, способные реагировать с кислородом и при комнатной температуре. С помощью катализаторов, снижающих энергию активации, могут идти без подогрева и другие процессы, в частности соединение кислорода с водородом.

Обычно же эта реакция идет при повышенных температурах и протекает очень бурно — может даже перейти во взрыв. Такой процесс происходит но схеме разветвленной цепной реакции. (Теория ценных, реакций создана в результате работы многих ученых и в первую очередь — лауреата Нобелевской премии академика Н.Н. Семенова.) Ценные реакции начинаются с образования нестабильных активных частиц — свободных радикалов, «носителей» неспаренных электронов (па схеме они обозначены звездочками). Они-то и ведут реакцию «по цепочке»:

Популярная библиотека химических элементов. Книга первая. Водород — палладий - i_037.png

Высокая окислительная способность кислорода лежит в основе горения всех видов топлива, включая пороха, для горения которых не нужен кислород воздуха: в процессе горения таких веществ кислород выделяется из них самих.

Кислород — один из сильных окислителей. Об этом можно судить хотя бы потому, что баки с жидким кислородом — необходимая принадлежность большинства жидкостных ракетных двигателей.

Впрочем, далеко не всегда окислительные реакции с участием кислорода выглядят как стихия пламени или взрыва.

Процессы медленного окисления различных, веществ при обычной температуре имеют для жизни не меньшее значение, чем горение — для энергетики.

Медленное окисление, веществ пищи в пашем организме — «энергетическая база» жизни. (Заметим попутно, что наш организм не слишком экономно использует вдыхаемый кислород: в выдыхаемом воздухе кислорода примерно 16%.) Тепло преющего сена — результат медленного окисления органических веществ растительного происхождения. Медленное окисление навоза и перегноя согревает парники…

Но не всегда медленное окисление органических веществ безвредно и безопасно. Если тепло, выделяющееся в этом процессе, не отводится, может произойти самовоспламенение. Это известно издавна. В учебнике химии, выпущенном в России в 1812 г., рассказывалось о пожарах в Петербурге, вызванных этим явлением. «В 1770 г. сделался великий пожар в пеньковом магазине на острове Малыя Невы, где совсем не держали огня». Правда, в том же учебнике рассказывалось о случае самовоспламенения «одной ∙ старухи из Северной Америки» с примечанием, что «сие происходит преимущественно с людьми, невоздержанными в употреблении спиртных напитков»…

Памятуя о необходимости борьбы с пьянством силачи печати и науки, не стоило бы опровергать подобные заявления. Но, увы, факты — вещь упрямая: человеческий организм рассеивает тепло в пространстве, и даже самые прожженные пьяницы физически не могут самовоспламениться. Хорошо, что с научной точки зрения противоположный тезис — пьяного бог бережет — столь же несостоятелен.

Заканчивая главу о свойствах и особенностях кислорода, напомним — совсем коротко — о круговороте этого элемента в природе.

Если бы растения в процессе фотосинтеза не превращали воду и углекислый газ в органические соединения и этот процесс не сопровождался высвобождением связанного кислорода, то, исчерпав довольно быстро запасы атмосферного кислорода, весь животный мир, включая человечество, вскоре задохнулся бы. Но и растениям после этого пришлось бы несладко.

Дело в том, что растения, подобно животным, потребляют атмосферный кислород, правда, они делают это исключительно в темное время суток. На ночь, когда прекращаются процессы фотосинтеза, растения из производителей кислорода превращаются в его потребителей. Это явление наблюдал еще Шееле. А другой первооткрыватель кислорода Дж. Пристли еще до того, как кислород был открыт, выяснил, что зеленая ветка мяты, помещенная под стеклянный колпак с воздухом, в котором уже погасла свеча, возвращает этому воздуху способность поддерживать дыхание и горение.

Кислород и промышленность

Дуй к забою, дуй к забою,
Всюду, где народ,
На земле и под землею
Нужен кислород.
Фазиль Искандер

Эти строки вынесены в эпиграф отнюдь не за поэтические достоинства. Кислород действительно нужен «на земле и под землею» и вообще «всюду, где народ», например в космических кораблях. Первооткрыватель кислорода Дж. Пристли предугадал одно из важных применений элементного кислорода — в медицине. «Он может быть очень полезен при некоторых тяжелых болезнях легких, когда обычный воздух не может достаточно быстро удалять флогистонированные испорченные испарения».

Кислород применяется в лечебной практике не только при легочных и сердечных заболеваниях, когда затруднено дыхание. Подкожное введение кислорода оказалось эффективным средством лечения таких тяжелых заболеваний, как, например, гангрена, слоновость, трофические язвы.

Не менее важен элемент № 8 и для промышленности. Обогащение воздуха кислородом делает эффективнее, быстрее, экономичнее многие технологические процессы, в основе которых — окисление. А таких процессов — много. На них пока держится почти вся тепловая энергетика. Превращение чугуна в сталь тоже невозможно без кислорода. Именно кислород «изымает» из чугуна избыток углерода.

Замена воздушного дутья «кислородным» (в мартеновскую печь или конвертор обычно подается не чистый кислород, а воздух, обогащенный кислородом) намного увеличивает производительность сталеплавильных агрегатов. Одновременно улучшается и качество стали.

При замене обычного воздуха смесью 35% кислорода и 65% азота расход кокса в процессе выплавки ферросплавов (ферромарганца, ферросилиция, феррофосфора) снижается почти в два раза, а производительность печи возрастает более чем вдвое.

Сейчас в нашей стране черная металлургия поглощает более 60% получаемого кислорода. Нужен кислород и в цветной металлургии. Так, при выплавке свинца на Усть-Каменогорском свинцово-цинковом комбинате дутье, обогащенное кислородом до 30—31%, в свое время помогло снизить расход топлива более чем на треть, а флюсов — вдвое, что дало многомиллионную экономию.

При сжигании водорода в токе кислорода образуется весьма обыкновенное вещество — H2O. Конечно, ради получения этого вещества не следовало бы заниматься сжиганием водорода (который, кстати, часто именно из воды получают). Цель этого процесса иная, она будет ясна, если ту же реакцию записать полностью, учитывая не только химические продукты, но и энергию, выделяющуюся в ходе реакции: Н2 + 0,5O2 = Н2O + 68 317 кал. Почти семьдесят больших калорий на грамм-молекулу! Так можно получить не только «море воды», но и «море энергии». Для этого и получают воду в реактивных двигателях, работающих на водороде и кислороде.

Та же реакция используется для сварки и резки металлов. Правда, в этой области водород можно заменить ацетиленом. Кстати, ацетилен все в больших масштабах получат именно с помощью кислорода, в процессах термоокислительного крекинга: 6СН4 + 4O2 → НС≡СН + 8Н2 + + 3СO + СO2 + 3Н2O. Это только один пример использования кислорода в химической промышленности. Элемент № 8 нужен для производства многих веществ (достаточно вспомнить об азотной кислоте), для газификации углей и мазута… На нужды этой отрасли расходуется немало кислорода.