Чтобы стыковочное устройство не имело этих недостатков, оно должно иметь идентичную конфигурацию и, кроме того, стыковочный механизм должен располагаться по периферии шпангоута; при такой компоновке тоннель остается свободным. В конце концов именно таким стал новый стыковочный агрегат — АПАС, который создали советские и американские конструкторы для стыковки кораблей «Союз» и «Аполлон».
Надо сказать, что и мы, и американцы пришли к андрогинной конфигурации разными путями, руководствуясь различными соображениями. Стыковочное устройство для программы «Союз» — «Салют» имело андрогинные шпангоуты, но не было периферийным: внутри тоннеля на крышках люков располагались стыковочный механизм и приемный конус. Когда крышки открывались, тоннель освобождался для перехода космонавтов. Крышки получились довольно громоздкими, однако орбитальный отсек «Союза» и переходный отсек «Салюта» оказались достаточно просторными, позволяя выполнять эту операцию.
У наших американских коллег сложилась иная ситуация: объемы и формы капсулы «Аполлона» и LM — лунного модуля не позволяли установить стыковочный механизм на крышку. Все эти узлы (механизм, конус и две крышки) снимали по очереди. Места для них не хватало, к тому же процедура складывания и повторной установки была сложной, требовала значительных физических усилий от астронавтов, работавших в невесомости. Многие из них, летавшие по программе «Аполлон», жаловались на неудобства и трудности при выполнении этой операции. Они сравнивали ее со сменой автомобильного колеса — работа, как известно, не ахти какая приятная, а для американцев вообще непривычная. В отличие от американских суперменов наши удивительные российские женщины овладели и этой мужской операцией.
Понимая объективные недостатки своего стыковочного устройства и активное давление астронавтов, НАСАвские конструкторы начали работать над периферийной конфигурацией.
Здесь уместно еще раз остановиться на особенностях стыковки космических кораблей, чтобы понять те особенности, которые приходится учитывать при их конструировании, с тем чтобы надежно выполнить эту непростую задачу.
Представьте, как стыкуются в сборочном цехе два отсека космического корабля. Буквально сдувая пылинки, сборщики высокой квалификации подготавливают стыки с резиновым уплотнением. Со всеми мерами предосторожности и с большой точностью они соединяют шпангоуты, заворачивают несколько десятков болтов, обеспечивая строго регламентированную затяжку с помощью специальных моментных ключей. В заключение проводится тщательная контровка всех резьбовых соединений. В космосе все стыки корабля должны быть герметичными, не должны раскрываться под действием самых больших нагрузок, создаваемых внутренним давлением, реактивными двигателями и другими возмущениями. Сборочные операции вместе с проверкой герметичности занимают обычно не одну рабочую смену.
Такие же требования предъявляются к стыковке космических аппаратов на орбите. В отличие от сборки на земле, в космосе открытые торцы агрегатов, летавших на ракете–носителе, а затем в открытом космосе без всякой защиты, должны соединиться автоматически в течение нескольких минут без предварительного осмотра и подготовки. Специальные датчики обязаны сигнализировать пилотам о выполнении всех стыковочных операций. В совместном полете стыки должны сохранять герметичность с высокой степенью надежности, и никакая случайность, перегрузки или даже нечаянное нажатие командной кнопки на пульте космонавтов не должны привести к их раскрытию. При открытых крышках переходного тоннеля от надежности стыка зависит безопасность и жизнь космических экипажей.
После окончания полета нужно открыть замки и расстыковаться, чтобы вернуться на Землю.
Надежность — важнейшее требование ко всем космическим операциям. Любая операция по соединению и последующей расстыковке должна выполняться при любых условиях, даже при отказе какого?нибудь отдельного узла или элемента. Для этого конструкцию дублируют и принимают другие меры, повышающие живучесть механизма.
Стремление повысить надежность стыковочных операций подтолкнула меня еще в 1968 году спроектировать оба стыковочных агрегата идентичными. В результате стыковочные шпангоуты стали одинаковыми, к тому же содержащими дублирующие комплекты замков. Тогда же появился принцип обратной симметрии, теоретическая основа андрогинности, в соответствии с которой все ответные элементы располагались симметрично относительно общей оси. Чтобы обеспечить полное дублирование всех операций, требовался резервный стыковочный механизм. Вот почему тогда, в 1968 году, «продавая идею», я даже добавил к предложенной концепции две сменные крышки. Так на активном агрегате корабля «Союз» наряду с основной крышкой со штырем появился вариант с крышкой–конусом. На пассивном агрегате орбитальной станции тоже можно было установить две крышки, но в другой последовательности.
Столь вычурная конфигурация привлекла меня еще по одной причине: она обеспечивала стыковку двух любых кораблей, оборудованных подобной техникой. В результате появлялась возможность оказывать помощь терпящим бедствие в космосе. С такой же гуманной идеей три года спустя, в 1971 году, приехали в Москву американские специалисты.
Для проекта «Союз» — «Салют» вся эта стыковочная фантазия образца 1968 года, конечно, была не нужна. Тем не менее старые дебютные идеи пригодились, когда 20 лет спустя для МКС — международной космической станции — стали проектировать многочисленные модули с перекрестной стыковкой. Тогда мне пришлось по–настоящему напрягать воображение и искать способ соединять их между собой в разных сочетаниях. Таким же путем родились так называемые гибридные конструкции — агрегаты со смешанными механизмами: штырями, конусами и периферийными кольцами. В то же время три из четырех орбитеров из флотилии «Спейс Шаттлов», оборудованные АПАС-95, могли в принципе состыковаться между собой.
И это еще не все. Когда на рубеже веков возникли осложнения с выполнением программы МКС, космические стыковщики проявили еще большую изощренность. В дополнение к андрогинам появились космические трансвеститы: мы научились менять «половые» признаки наших агрегатов прямо на орбите, что называется «на ходу»! Рассказы об этих почти мифических превращениях — впереди.
Не верь после этого в судьбу, в предназначение!
Однако это уже другая часть нашей жизни и другая часть книги — «Двадцать лет спустя».
Вместе с древними мифами и с космической стыковкой андрогины вошли в мою жизнь навсегда. Много лет спустя моя дочь Катерина, исчерпав все аргументы в пользу приобретения собаки, выдвинула, похоже, безотбойную идею: мы назовем ее Апас, Апасик.
Готовясь к встрече XXI века, я даже выпустил свою, «АПАСную водку» под надежным названием «Андрогиновка».
2.4 Впервые в Америку. Профессор Бушуев, доктор Ланни и другие
Начавшийся 1971 год оказался насыщенным событиями, о которых уже рассказывалось в связи с первым «Салютом» и которые совпали с подготовкой к первому международному космическому проекту. На начальном этапе международные и внутренние направления нашей деятельности оказались тесно связанными и влияли на принятие предстоявших важных решений.
Одобрив итоговый документ октябрьской встречи 1970 года, наши руководители договорились о следующей встрече, на этот раз на более высоком уровне: Келдыш пригласил Дж. Лоу, действующего администратора НАСА, в Москву обсудить такие потенциальные области сотрудничества, как метеорология, контроль окружающей среды, изучение планет, космическая биология и медицина.
Во встрече приняли участие: А. И. Царев (ВПК), И. П. Румянцев (MOM), Ю. А. Мозжорин (директор ЦНИИМаш) и другой генералитет, в прямом и переносном смысле. Из нашего КБ на встречу поначалу никого не пригласили, лишь в конце встречи К. П. Феоктистова допустили к обсуждению совместного пилотируемого проекта, во время которого Лоу внес новые конкретные предложения. Он подтвердил, что НАСА предпочитает сосредоточиться на варианте со стыковкой уже летающих кораблей, то есть «Союза» и «Аполлона», а не рассматривать только абстрактные средства сближения и стыковки для будущих кораблей и станций. Келдыш и Феоктистов согласились лишь передать эти предложения по инстанции тем, кто мог принимать такие глобальные, почти политические решения, и просили американцев ничего не сообщать прессе. Стороны договорились также о том, что в феврале НАСА пришлет конкретные технические предложения.