В ходатайстве Института химической физики АН СССР от 27 января 1976 года о награждении ученого орденом Ленина и второй золотой медалью «Серп и молот» отмечалось:

«Особо важные исследования выполнены Н.Н. Семеновым в последние годы. Это прежде всего открытие нового класса разветвленных цепных реакций с энергетическим разветвлением, происходящим за счет реакций колебательно-возбужденных частиц, образующихся в экзотермических элементарных реакциях в ходе цепного процесса в сверхравновесных концентрациях. Развитие этих работ Н.Н. Семеновым и ею сотрудниками, а затем и другими исследователями привело к возникновению нового направления, так называемой неравновесной химической кинетики, которое сейчас активно развивается во всем мире. Эти работы послужили одной из основ создания химических лазеров, и первый химический лазер на разветвленной цепной реакции был создан в Институте химической физики.

В 1972 году Н.Н. Семеновым было предсказано и затем под его руководством открыто явление аномально больших скоростей и глубин превращения в цепных реакциях, сформулированы общие условия ингибированного самовоспламенения газовых смесей.

В последние годы по инициативе Н.Н. Семенова в институте начаты и успешно развиваются новые работы по катализу и химической бионике, которые привели к открытию новых каталитических процессов (неферментативная фиксация азота, активация насыщенных углеводородов и др.).

Н.Н. Семеновым и его учениками развиты новые представления о многоэлектронных процессах с участием комплексов переходных металлов, о практическом использовании в химии будущего принципов энергетики живых организмов».

Даже в последние годы жизни Николай Николаевич, по словам его коллег, оставался энтузиастом науки, творческой личностью, которую отличала бьющая через край энергия. Он был высок и худощав, любил охотиться и работать в саду, увлекался архитектурой.

Умер Семенов 25 сентября 1986 года.

ПОЛ ФЛОРИ

(1910—1985)

Экспериментальные открытия Флори, теоретические обобщения и предвидения, изложенные в известных монографиях «Статистическая механика цепных молекул» (1953) и «Принципы полимерной химии» (1963), внесли значительный вклад почти во все области полимерной науки и во многом определили основные направления ее развития.

Пол Джон Флори родился 19 июня 1910 года в Стерлинге, маленьком городке штата Иллинойс. Отец, Эзра Флори, был священником-педагогом, а мать, Марта (в девичестве Брумбау) Флори, – учительницей. Среднее образование мальчик получил в местной школе в Элгине. Но ее окончании в 1927 году Пол поступил в Манчестерский колледж, расположенный в Северном Манчестере (штат Индиана). Возникший интерес у Флори поддерживал один из профессоров, К.В. Холл. В 1931 году Пол получил степень бакалавра и начал работать в Университете штата Огайо. Здесь он позднее получил степень магистра по органической химии.

Но он отошел от «химии поваренной книги» (выражение из романа С. Льюиса «Эроусмит») и переключился на физическую химию. Диссертация Флори посвящена фотохимическим процессам в окислах азота, имевшим прикладной характер (окислы азота являются компонентами смога). Успешно защитив диссертацию в Университете штата Огайо, в 1934 году он получил докторскую степень.

Новым местом работы Флори стала фирма «Дюпон де Немур» в Уилмингтоне (штат Делавэр). Молодой ученый вошел в состав ведущей группы исследователей, которой руководит У.Х. Карозерс. В то время группа Карозерса, будущего создателя нейлона, занималась синтезом полимеров, размеры молекул которых были значительно больше, чем те, с какими обычно имели дело химики. Системная программа Карозерса по синтезу полимеров сделала фирму «Дюпон» лидером в области изучения органической химии полимеров, но он понимал, что огромную работу еще предстоит проделать над полимерами, используя инструментарий физической химии. Эту задачу выпало решать Флори. В процессе своей работы он особенно интересовался скоростью реакции полимеризации.

Для решения этой сложной задачи Флори постулировал принцип, согласно которому реакционная способность взаимодействующих функциональных групп не зависит от длины цепи, с которой эти группы связаны (принцип Флори). При описании кинетики поликонденсации такое упрощение позволило значительно сократить число одновременно решаемых кинетических уравнений и дать простое математическое выражение для степени полимеризации и молекулярно-весового распределения образующегося полимера (распределение Флори). Позднее было показано, что найденное распределение справедливо также для радикальной полимеризации.

В 1936 году Флори женился на Эмилии Катерине Табор. Позднее у них родились две дочери и сын.

В 1937 году ученый впервые обнаружил элементарный акт передачи цепи при радикальной полимеризации, приводящий к переносу активного центра от растущей макромолекулы на другую частицу. В результате этого уменьшалось молекулярно-весовое распределение, а также могли возникнуть разветвления в макромолекулах.

В том же году произошла трагедия – Карозерс покончил с собой. Через год Флори покинул фирму «Дюпон». Он принял предложение стать адъюнкт-профессором исследовательской лаборатории фундаментальных наук при Цинциннатском университете (штат Огайо). Здесь Флори развил теорию, объяснившую закономерность образования разветвлений в некоторых полимерах, приводящих к появлению сетчатой структуры. Такая сетчатая структура характерна для эластичных полимеров.

В сентябре 1940 года Флори перешел в качестве старшего химика в фирму «Эссо лэборатрис» в Линдене (штат Нью-Джерси), созданную при «Стандард ойл девелопмент компани». Он работает над проблемой получения искусственного каучука. Для улучшения бутилового каучука (новый синтетический каучук, получаемый из газов – продуктов переработки нефти) он начал исследования в области собственных давних интересов – эластичности каучука.

В 1941—1942 годах Флори и М.Л. Хаггинс выдвинули теорию растворов полимеров на основе квазикристаллической модели раствора. Эта теория позволила рассчитать энтропию смешения полимера с растворителем. Кроме того, Флори показал, что для каждого разбавленного раствора полимера существует такая температура, при которой он ведет себя как идеальный раствор. Однако эта теория обладала существенными ограничениями, поскольку не учитывала молекулярного веса полимера и степени развернутости его цепей.

В последующих работах, опубликованных в пятидесятые годы, Флори и его сотрудники учли гидродинамическое поведение растворов полимеров, впервые указав на необходимость учета «эффекта исключенного объема» при разработке термодинамики разбавленных растворов. Флори назвал температуру, при которой раствор становится идеальным (тэта-точкой). В настоящее время известная как температура Флори, она является фундаментальным параметром при определении формы макромолекул.

Однако в годы войны возможности для проведения фундаментальных исследований на базе «Стандард ойл» были ограничены. Когда фирма «Гудеар тайр энд раббер» пригласила его возглавить небольшую группу для выполнения фундаментальных исследований, Флори воспользовался благоприятной возможностью и в октябре 1943 года переехал в Акрон (штат Огайо).

Работа в «Гудеаре» создала Флори всемирную известность, и весной 1948 года его пригласили на должность декана химического факультета Корнеллского университета, в Итаку (штат Нью-Йорк). Можно сказать, что его прекрасные лекции заложили основу создания относительно молодой дисциплины, какой являлась химия полимеров. Это позволило Флори стать профессором химии Корнеллского университета.

В течение пяти лет работы в «Гудеаре» и за время работы в Корнеллском университете Флори сделал много фундаментальных открытий в области химии полимеров.

В эти годы Флори опубликовал ряд статей, посвященных количественному описанию кинетики трехмерной поликонденсации и молекулярно-весового распределения в полифункциональных системах, характеризующихся образованием разветвленных полимеров с последующим превращением в трехмерную молекулярную сетку, пронизывающую весь объем. Момент, при котором такая система внезапно теряет текучесть и из вязкой жидкости превращается в неплавкий и нерастворимый продукт (трехмерную сетку), называют точкой гелеобразования. В своих статьях Флори дал математическое описание условий нахождения точки гелеобразования.