Когда механизм развития этой болезни был понят, стало очевидным и громадное практическое значение открытия Ландштейнера и Винера. Возможное осложнение могли уже предвидеть, могли начать искать способы предупреждения и лечения его.
Иммунизация матери резус–антигенами развивающегося плода происходит не в самом начале беременности и даже не в середине ее, а в конце. В самые начальные сроки развития эмбрион не имеет системы кровообращения — ни сердца, ни сосудов, ни крови. Нет и эритроцитов. Затем, когда все органы и клетки появляются и эритроциты начинают циркулировать по организму плода, они еще не несут на своей поверхности резус–антигенов. Наконец появляются и они.
Однако организм матери все еще не иммунизируется ими, потому что кровь и эритроциты развивающегося ребенка не попадают в материнский кровоток. Кровеносные системы плода и матери раздельны. Специальный орган—плацента разделяет систему кровообращения этих двух организмов. Плацента представляет собой биологическую мембрану. С одной стороны ее протекает кровь матери, с другой — ребенка. Все питательные вещества и кислород через мембрану проходят, но клетки, в том числе и эритроциты, не проникают.
Как правило, не проходят. Но бывают мелкие травмы: какой–то маленький кровеносный сосуд от растяжения лопнет или небольшая инфекция вроде простуды нарушит кровообращение… Понемногу такие случайности накапливаются, и к концу беременности в крови матери появляются антитела против резус–положительных эритроцитов ее собственного ребенка.
Их не так много, чтобы повредить ребенку. Это хорошо. Но недостаточно, чтобы связать вновь поступающие эритроциты и предотвратить дальнейшую иммунизацию. Это плохо. И именно поэтому во время родов, сопровождающихся серьезными сосудистыми травмами в плаценте, довольно много резус–антигена попадает в кровоток матери. Происходит сильная иммунизация, вырабатывается огромное количество антител. Следующему ребенку, во время второй беременности развиваться вовсе несладко. Он все время находится под воздействием разрушительных атирезусных антител. Вот почему гемолитическая желтуха новорожденных почти никогда не бывает при первой беременности и почти всегда возникает при повторной.
Иммунологический метод предупреждения гемолитической желтухи новорожденных (а другого и не существует!) состоит в следующем. Если мать резус–отрицательна, а отец резус–положительный, то к концу первой беременности она должна на несколько дней раньше обычного отправиться в родильный дом. Там перед самыми родами или сразу же после них ей введут приготовленную заранее иммунную сыворотку, содержащую большое количество антирезусных антител. Ребенку они повредить не могут, но, связав проникшие в кровь матери во время родов антигены, отменят процесс иммунизации. Введенные с сывороткой антитела через 2—3 недели исчезнут из крови матери, а собственные вырабатываться не будут. Второй ребенок будет вне опасности.
Если по каким–то причинам описанное выше не было сделано и возникла тяжелая гемолитическая желтуха, то новорожденному производят обменное переливание крови: полную замену крови младенца совместимой кровью донора. Из организма удаляются все антитела против резус–антигена, и эритроциты перестают разрушаться.
Антигенные калейдоскопы
— Сколько же всего антигенов у человеческих клеток?
— Очень много.
— И у каждого человека все они присутствуют?
— Вы почти правы. У большинства людей есть антигены А или В, или А и В системы АВ0. Только у некоторых нет ни А, ни В. У каждого есть антиген М или N, или и М и N системы MN. Почти у каждого есть резус и так далее.
— Не слишком ли много антигенов?
— Такова жизнь.
Антитела строго специфичны. При внедрении в организм бактерий брюшного тифа возникают антитела против них и только против них, а при внедрении микробов холеры — против холерных вибрионов. Антитела противобрюшнотифозные не трогают возбудителей холеры, и, наоборот, противохолерные иммунные сыворотки борются лишь с холерным микробом, но не с бациллами брюшного тифа.
Следовательно, антитела возбудителей брюшного тифа и холеры различны. Точно так же различаются между собой антигены других бактерий — чумы, дизентерии, сибирской язвы, дифтерии, туляремии. Все микроорганизмы отличаются друг от друга по целому ряду признаков и прежде всего по антигенам. Но не подумайте, что каждый содержит всего один–единственный антиген. Нет. У каждого микроба целый набор антигенов.
Инопланетяне
Брюшнотифозная бактерия. Она представляет собой микроскопическую палочку длиной 1—2 микрона с многочисленными тоненькими «ножками» — жгутиками. В составе этого микроба десяток антигенов. Из них три главных: в жгутиках Н–антиген, а в теле О–и Vi–антигены. Последний связан с агрессивными качествами микроба.
Введение в кровь животному не микробных антигенов, а других чужеродных веществ, например клеток крови человека, приводит к возникновению антител, которые взаимодействуют только с человеческими клетками и склеивают их. Антитела возникают и если в кровь животному ввести не клетки, а бесклеточные белки; например, кровяную сыворотку другого человека, Эти антитела будут взаимодействовать с человеческими и только с человеческими белками, не реагируя на белки животных.
Если, даже у микробов по нескольку антигенов, то какое же громадное количество их должно быть в крови и тканях человека! Уж конечно, не один десяток. Только в кровяной сыворотке их около тридцати.
Особенно наглядно это продемонстрировал французский ученый, выходец из России Петр Грабар. Мы уже говорили о химии и иммунологии. Теперь будем говорить о физико–химических методах. Грабар иммунизировал кролика человеческой сывороткой и с полным основанием ожидал, что в ответ на каждый антиген сыворотки образуется свое антитело. Не сомневайтесь, так оно и было. После этого он поместил человеческую сыворотку в студень из агар–агара и пропустил электрический ток. Разные белки–антигены распределились в электрическом поле по–разному, поскольку все они отличались размерами своих молекул и зарядов.
Грабар обработал студень кроличьей сывороткой, содержащей антитела, и каждое антитело соединилось со своим, антигеном. Произошла множественная преципитация. (Во время преципитации происходит видимое невооруженным глазом помутнение прозрачной сыворотки.) Возникло 19 дуг преципитации. Гениально просто, а потому удивительно красиво. Метод усовершенствовали. В результате удалось обнаружить в сыворотках людей по 25—30 разных антигенов. Это сегодня! А что будет завтра?!
Каждый вид клетки человеческого организма содержит, по–видимому, не меньшее число антигенов. Подробнее всего в этом отношении изучены красные кровяные шарики — эритроциты. У одних людей в эритроцитах находится антиген А, у других — В, у третьих и А, и В, а у четвертых нет ни А, ни В. Это система антигенов АВ0 (а–б–ноль), о которой мы уже знаем. Затем нашли антигены. MN, потом открыли систему «Резус» (Rh), состоящую из восьми антигенов, нашли антигенные системы Даффи, Кел–Келано. В настоящее время детально изучены 14 систем. Всего в общей сложности более 70 различных антигенов, которые составляют своеобразный антигенный узор эритроцитов.
По главным эритроцитным антигенам у одного человека «узор» может выглядеть так: 00, MN, Ss, ДД, Сс, ее, Leаа, Кк, FyВВ, Luав, Рр, Jkаа, а у другого иначе: АВ, MM, ss, Дd, cc, Ее, Leав, Кк, Fуав, Luаа, РР, JKвв.
Когда смотришь на эти знаки, эту символику, белковой индивидуальности, невольно думаешь о некой визитной карточке, каждого живого существа. У вас антигенная карточка одна, у меня другая, у вашей кошки — третья, у его — четвертая и так далее. Сколько живых существ на планете, столько антигенных калейдоскопов.