Около 108 остатков NH2-конца Н-цепи, что является первой ее четвертью, составляют вариабельную область. В каждой вариабельной области имеются три гипервариабельных участка. Остальные три четверти Н-цепи являются константной областью. Две Н-цепи Ig ковалентно связаны друг с другом S — S-связями в их константных областях. По последовательности константных областей различают пять типов Н-цепей: альфа, (α), дельта (δ), эпсилон (ε), гамма (γ) и мю (μ); они положены в основу классификации иммуноглобулинов, в соответствии с которой последние разделяются на пять классов: IgA, IgD, IgE, IgG, IgM. Иммуноглобулины D, E и G представлены мономерами. Иммуноглобулин А имеет мономеры и димеры (L2H2)2. Иммуноглобулин М содержит только пентамеры (L2H2)5. Димеризации IgA способствуют две экстраполипептидные цепи — связывающая цепь (J) и секреторный компонент (SC). Пентамерная форма IgM существует благодаря наличию J-цепей, которые ковалентно связывают пять мономеров. Иммуноглобулины всех пяти классов имеют углеводные компоненты, прикрепленные к константным областям их Н-цепей.

Иммуноглобулин А подразделяется на два подкласса по типу Н-цепей: α1 и α2. IgG объединяет четыре подкласса, так как имеются 4 типа γ-цепей: γ1, γ2, γ3 и γ4. Каждый класс или подкласс иммуноглобулинов имеет несколько аллельных вариантов, которые являются взаимоисключающими формами и отличаются аминокислотными последовательностями вариабельных, особенно гипервариабельных участков. Этим объясняется способность животного организма продуцировать для борьбы с тысячами антигенов, которые могут встретиться, иммуноглобулины многих тысяч типов.

Строение иммуноглобулина G иллюстрирует рис. 7.6. Рис. 7.7 дает представление о некоторых характеристиках различных иммуноглобулинов. Гипервариабельные области L- и Н-цепей одной половины молекулы Ig участвуют в связывании одной молекулы антигена, т. е. каждый Ig связывает две молекулы одного и того же антигена. Для выяснения роли различных участков молекулы в иммунном ответе был предпринят структурный анализ IgG. После обработки папаином происходит разрыв S — S-связей в NH2-концевых участках двух Н-цепей, в результате чего освобождаются два антигенсвязывающих фрагмента, каждый из которых содержит L-цепь и NH2-концевой участок одной Н-цепи. COOH-концевые участки двух Н-цепей, соединенные S — S-связями, называются кристаллизуемыми фрагментами Fc. Они ответственны за другие биологические функции, такие, как транспорт иммуноглобулинов крови матери эмбриону через мембрану плаценты во время внутриутробного развития и взаимодействие с клеточной мембраной иммунокомпетентной клетки.

Биохимия старения - _49.jpg

Рис. 7.6. Строение иммуноглобулина G

Биохимия старения - _50.jpg

Рис. 7.7. Класс иммуноглобулинов определяют по типу тяжелой цепи в молекуле. Имеется 5 классов тяжелых цепей: μ, γ, α, δ и ε; классы γ и α имеют подклассы. Кроме того, каждый иммуноглобулин может иметь любую из двух типов легких цепей — χ или λ. Некоторые Ig образуют олигомеры или комплекс, состоящий из нескольких субъединиц. IgM обычно представляет собой пентамер, содержащий пять субъединиц и добавочную 'соединительную' цепь, или J-цепь. IgA может быть мономером, димером или тримером, состоящим соответственно из 1, 2 и 3 субъединиц. J-цепь представлена олигомерными формами и димером; в слюне и слезах она связана с еще одним полипептидом — секреторным компонентом (SC; от англ. secretory component) [19]

Вариабельность иммуноглобулинов

Каждый клон В-лимфоцитов вырабатывает плазматические клетки, которые синтезируют Ig только одного типа. Вариабельные и константные области L- и Н-цепей Ig кодируются различными генами [10, 23, 75, 93, 119, 128]. Имеются три семейства генов иммуноглобулинов. Полагают, что одно семейство состоит из набора генов, кодирующих вариабельные области как L-, так и Н-цепей. Близко на той же хромосоме расположено второе семейство, состоящее из меньшего числа генов, которые кодируют две константные области L-цепи, χ и λ. Третье семейство кодирует константные области различных классов и подклассов Н-цепей. Гены внутри каждого семейства сцеплены, но сами семейства не сцеплены. Каждое семейство генов Ig представлено в гаплоидном наборе хромосом, полученном от одного родителя, только один раз. Предполагают, что проявляются гены только одной из двух хромосом, поскольку известно, что даже у индивидуума, гетерозиготного по генетическому маркеру Ig, в каждой плазматической клетке выражается только один аллель. Это явление называется аллельным исключением [19].

Каков же механизм, благодаря которому в организме животного вырабатываются тысячи типов различных иммуноглобулинов? Этот механизм должен обеспечить селективную экспрессию только одного из двух генов L-цепи, χ или λ; при этом вариабельный ген должен функционировать вместе с константным. По данному механизму определенный вариабельный ген должен функционировать вместе с одним из пяти константных генов для Н-цепи: α, δ, ε, γ, μ. Неизвестно, сколько имеется вариабельных генов. В соответствии с теорией гаметического наследования в геноме представлена вся совокупность необходимых вариабельных генов, однако для их размещения потребовалось бы очень много места. Сторонники теории соматических мутаций полагают, что многообразие вариабельных генов создается мутационным процессом и потому не наследуется.

В настоящее время считается, что гетерогенность антител (т. е. способность организма вырабатывать разнообразные иммуноглобулины для того, чтобы справиться с любым антигеном), вероятно, зависит от наличия в геноме 4–6 генов для вариабельных областей. Согласно этому взгляду, гетерогенность возникает благодаря сочетанию вариабельных генов с очень небольшим числом генов константной области, а также благодаря перестановкам и комбинациям между L- и Н-цепями. Дальнейшие изменения вариабельных генов могут быть вызваны рекомбинациями и соматическими мутациями [10, 25, 93, 103, 104, 119, 128]. Это возможно благодаря существованию гипермутабельных (hv) областей вариабельных генов, которые могут быть предрасположены к таким мутациям.

Гены вариабельных и константных областей L- и Н-цепей не соседствуют друг с другом [10, 23, 75, 93]. В стволовых клетках эмбриона они разделены большими промежуточными областями. Во время процессинга в костном мозге или в фабрициевой сумке V- и С-гены, очевидно, сближаются путем перестройки ДНК, но остаются разделенными промежуточной последовательностью. Селекция V и С-геное возникает, вероятно, после того, как антиген связывается с В-лимфоцитом. При этом V- и С-гены транскрибируются как единый предшественник гетерогенной ядерной РНК (гяРНК), имеющий нетранслируемую последовательность. Затем гяРНК подвергается в ядре сплайсингу и процессингу, в результате чего появляется зрелая мРНК, которая транслируется с образованием L-цепи, имеющей смежные V- и С-области. Описанная модель иллюстрируется рис. 7.8 и 7.9 [93]. В ней видны черты, сходные с транскрипцией и образованием предшественников мРНК для овальбумина и глобулина, которые также имеют промежуточные нетранслируемые последовательности, или интроны.

Биохимия старения - _51.jpg

Рис. 7.8. Двухстадийная модель интеграции константной и вариабельной области гена [93]. Стадия 1: перестройка ДНК и коммитирование клеток к V-гену. На этой стадии V- и С-гены ДНК зародышевой клетки разъединены. В антителопродуцирующей клетке эти гены сближаются, но их все-таки разделяет промежуточная нуклеотидная последовательность. Такая перестройка, или транслокация, ДНК представляет собой классическое 'интеграционное' событие, которое позволяет индивидуальной антителообразующей клетке коммитироваться к V-гену. Стадия 2: функциональная интеграция (связывание V- и С-областей в мРНК). На этой стадии в результате транскрипции активированного гена образуется предшественник ядерной РНК, который включает V-, С-области и промежуточную последовательность. Функциональная интеграция V- и С-областей происходит во время процессинга молекулы-предшественника преимущественно путем образования петли из промежуточных последовательностей и сшивания V- и С-областей. Таким образом, формируется молекула мРНК, на которой образуется полипептид Ig. Полагают, что другие вставки в V-области устраняются при сплайсинге ядерной РНК