Теоремы существования в И. т. доказываются преимущественно теми же неконструктивными средствами, что и в других разделах математики: при помощи теорем о неподвижной точке, о выделении из бесконечной последовательности сходящейся подпоследовательности и т. п., или же, в весьма узких случаях, путём интуитивного указания вида решения и последующего нахождения решения в этом виде.

  Фактическое решение некоторых классов антагонистических игр сводится к решению дифференциальных и интегральных уравнений, а матричных игр — к решению стандартной задачи линейного программирования. Разрабатываются приближённые и численные методы решения игр. Для многих игр оптимальными оказываются так называемые смешанные стратегии, тоесть стратегии, выбираемые случайно (например, по жребию).

  И. т., созданная для математического решения задач экономического и социального происхождения, не может в целом сводиться к классическим математическим теориям, созданным для решения физических и технических задач. Однако в различных конкретных вопросах И. т. широко используются весьма разнообразные классические математические методы. Кроме этого, И. т. связана с рядом математических дисциплин внутренним образом. В И. т. систематически и по существу употребляются понятия теории вероятностей. На языке И. т. можно сформулировать большинство задач математической статистики. Необходимость при анализе игры количественного учёта неопределённости предопределяет важность и тем самым связь И. т. с теорией информации и через её посредство — с кибернетикой. Кроме того, И. т., будучи теорией принятия решений, может рассматриваться как существенная составная часть математического аппарата операций исследования.

  И. т. применяется в экономике, технике, военном деле и даже в антропологии. Основные трудности практического применения И. т. связаны с экономической и социальной природой моделируемых ею явлений и недостаточным умением составлять такие модели на количественном уровне.

  К 70-м гг. 20 в. число публикаций по научным вопросам И. т. достигло многих сотен (в том числе несколько десятков монографий). Курсы по И. т. читаются во многих высших учебных заведениях для студентов математических и экономических специальностей (в СССР — с 1956).

  Международные конференции по И. т. проходили в Принстоне (1961), Иерусалиме (1965), Вене (1967) и Беркли (1970). Всесоюзные конференции по И. т. состоялись в Ереване (1968) и Вильнюсе (1971).

  Лит.: Нейман Дж. Моргенштерн О., Теория игр и экономическое поведение, пер. с англ., М., 1970; Льюс Р., Райфа Х., Игры и решения, пер. с англ., М., 1961; Карлин С., Математические методы в теории игр, программировании и экономике, пер. с англ., М., 1964; Воробьев Н. Н., Современное состояние теории игр, «Успехи математических наук», 1970, т. 25, № 2(152), с. 80—140; Оуэн Г., Теория игр, пер. с англ., М., 1971; Contributions to the theory of games, v.1—4, Princeton, 1950—59; Advances in game theory, Princeton, 1964.

  Н. Н. Воробьев.

Игра (вид деятельности)

Игра', вид непродуктивной деятельности, где мотив лежит не в результате её, а в самом процессе. И. сопровождает человечество на протяжении всей его истории, переплетаясь с магией, культовым поведением, спортом, военными и др. тренировками, искусством, в особенности исполнительскими его формами. И. свойственны и высшим животным. И. изучается историками культуры, этнографами, психологами (в частности, в связи с детской психологией), историками религии, искусствоведами, исследователями спорта и военного дела. В математической игр теории И. определяется как математическая модель конфликтной ситуации. Происхождение И. связывалось с магико-культовыми потребностями или врождёнными биологическими потребностями организма; выводилось из трудовых процессов (Г. В. Плеханов, «Письма без адреса»).

  Связь И. с тренировкой и отдыхом одновременно обусловлена её способностью моделировать конфликты, решение которых в практической сфере деятельности или затруднено или невозможно. Поэтому И. является не только физической тренировкой, но и средством психологической подготовки к будущим жизненным ситуациям. В качестве абстрактной модели конфликта И. легко превращается в форму выражения социальных противоречий (превращение в средневековой Византии «болельщиков» на ипподроме в политические партии, детские игры как модели социальных конфликтов «взрослого» мира).

  Особая психическая установка играющего который одновременно и верит и не верит в реальность разыгрываемого конфликта, двуплановость его поведения роднит И. с искусством. Вопрос о соотношении И. и искусства был поставлен И. Кантом и получил философско-антропологическое обоснование у Ф. Шиллера, видевшего в И. специфически человеческую форму жизнедеятельности по преимуществу «...человек играет только тогда, когда он в полном значении слова человек, и он бывает вполне человеком лишь тогда, когда играет» (Собрание соч., т. 6, М., 1957, с. 302). Генетическая связь искусства и И. отмечалась также в позитивистских концепциях происхождения искусства (например, в теории синкретического первобытного искусства и происхождения искусства из обряда и «действа» А. Н. Веселовского). И игра, и искусство, преследуя цели овладения миром, обладают общим свойством — решение предлагается не в практической, а в условной, знаковой сфере, которая в дальнейшем может быть использована в качестве модели практического поведения. Однако между И. и искусством имеется существенное отличие: И. представляет собой овладение умением, тренировку, моделирование деятельности, отличительным свойством И. является наличие системы правил поведения.

  Ю. М. Лотман.

  В психологии первая фундаментальная концепция И. была развита немецким философом и психологом К. Гросом (1899): в И. животных он видел предварительное приспособление («предупражнение») инстинктов к условиям будущей жизни. До него английский философ Г. Спенсер высказал взгляд на И. как проявление «избытка сил». Существенной поправкой к учению Гроса явилась теория австрийского психолога К. Бюлера о «функциональном удовольствии» как внутренней субъективной причине И. С противоположной Гросу теорией И. выступил голландский зоопсихолог Ф. Бёйтендейк, считая, что в основе И. лежат не инстинкты, а более общие изначальные влечения, находящиеся за инстинктами (влечение к освобождению, влечение к слиянию с окружающим и влечение к повторению). В психоаналитической концепции австрийского врача З. Фрейда И. рассматриваются как реализация вытесненных из жизни желаний.

  В советской психологии был развит подход к И. как к социально-историческому явлению (Л. С. Выготский, А. Н. Леонтьев, Д. Б. Эльконин и др.). В частности, игры детские рассматриваются как форма включения ребёнка в мир человеческих действий и отношений, возникающая на такой ступени общественного развития, когда высокоразвитые формы труда делают невозможным непосредственное участие в нём ребёнка, тогда как условия воспитания формируют у него стремление к совместной жизни со взрослыми.

  Лит.: Плеханов Г. В., Соч., т. 14, М., 1925, с. 54—64; Леонтьев А. Н., Проблемы развития психики, М., 1971; Groos K., Die Spiele der Tiere, Jena, 1896; его же, Die Spiele des Menschen, Jena, 1899; Bühler К., Die Krise der Psychologie, Jena, 1929; Buytendijk F. J., Wesen und Sinn des Spiels, В., 1934; Huizinga J., Homo ludens, L., 1949. См. также лит. при ст. Игры детские.

  И. Б. Даунис.

Игра (пос. гор. типа в Удмуртской АССР)

Игра', посёлок городского типа, центр Игринского района Удмуртской АССР, на р. Лоза (бассейна Вятки). Железнодорожная станция в 92 км к С. от Ижевска. Узел автодорог. 15 тыс. жителей (1970). Леспромхоз, комбинат строительных деталей, заводы домостроительный и молочный, мясокомбинат.

Игрень

Игре'нь, город (с1959) в Днепропетровской области УССР, на р. Самара (бассейна Днепра), в 17 км к С.-В. от Днепропетровска. Железнодорожная станция. 22 тыс. жителей (1970). Хлебный завод, гранитный карьер. Население города работает главным образом на предприятиях Днепропетровска.