В некоторых вариантах теории постулируется непереставимость операторов координат и операторов, описывающих поле. Это равносильно предположению о невозможности одновременного точного задания описывающих поле величин и точки пространства, к которой эти величины относятся (такого рода варианты часто называют теориями нелокализуемых состояний).

  В большинстве известных попыток К. п.-в. сначала вводятся постулаты, касающиеся «микроструктуры» пространства-времени, а затем получившееся пространство «населяется» частицами, законы движения которых приводятся в соответствие с новой геометрией. На этом пути получен ряд интересных результатов: устраняются некоторые расходимости (однако иногда на их месте появляются новые), в некоторых случаях получается даже спектр масс элементарных частиц, т. е. предсказываются возможные массы частиц. Однако радикальных успехов получить пока не удалось, хотя методическая ценность проделанной работы несомненна. Представляется правдоподобным, что возникающие здесь трудности свидетельствуют о недостатках самого подхода к проблеме, при котором построение новой теории начинается с постулатов, касающихся «пустого» пространства (т. е. чисто геометрических постулатов, независимых от материи, это пространство «населяющей»).

  Пересмотр геометрических представлений необходим — эта идея стала почти общепризнанной. Однако такой пересмотр должен, по-видимому, в гораздо большей мере учитывать неразрывность представлений о пространстве, времени и материи.

  Лит.: Марков М. А., Гипероны и К-мезоны, М., 1958, §§33 и 34; Блохинцев Д. И., Пространство и время в микромире. М., 1970.

  В. И. Григорьев.

Квантование пространственное

Квантова'ние простра'нственное в квантовой механике, дискретность возможных пространственных ориентаций момента количества движения атома (или др. частицы или системы частиц) относительно любой произвольно выбранной оси (оси z). К. п. проявляется в том, что проекция Мг  момента М на эту ось может принимать только дискретные значения, равные целому (0, 1, 2,...) или полуцелому (1/2, 3/2,5/2,...) числу m, помноженному на Планка постоянную

Большая Советская Энциклопедия (КВ) - i-images-143598581.png
,
Большая Советская Энциклопедия (КВ) - i-images-103395487.png
. Две другие проекции момента Mx и Му остаются при этом неопределёнными, т. к., согласно основному положению квантовой механики, одновременно точные значения могут иметь лишь величина момента и одна из его проекций. Для орбитального момента количества движения m (ml) может принимать значения 0, ± 1, ± 2,... ± l, где l = 0, 1, 2... определяет квадрат момента Ml(т. е. его абсолютную величину):
Большая Советская Энциклопедия (КВ) - i-images-101591675.png
. Для полного момента количества движения М (орбитального плюс спинового) m (ml) принимает значения с интервалом в 1 от — j до + j, где j определяет величину полного момента:
Большая Советская Энциклопедия (КВ) - i-images-119188523.png
 и может быть целым или полуцелым числом.

  Если атом помещается во внешнее магнитное поле H, то появляется выделенное направление в пространстве — направление поля (которое и принимают за ось z). В этом случае К. п. приводит к квантованию проекции mн магнитного момента атома m на направление поля, т.к. магнитный момент пропорционален механическому моменту количества движения (отсюда название m — «магнитное квантовое число»). Это приводит к расщеплению уровней энергии атома в магнитном поле вследствие того, что к энергии атома добавляется энергия его магнитного взаимодействия с полем, равная — mHH (см. Зеемана эффект).

  В. И. Григорьев.

Квантование сигнала

Квантова'ние сигна'ла, дискретизация непрерывных сигналов, преобразование электрического сигнала, непрерывного во времени и по уровню, в последовательность дискретных (отдельных) либо дискретно-непрерывных сигналов, в совокупности отображающих исходный сигнал с заранее установленной ошибкой. К. с. осуществляется при передаче данных в телемеханике, при аналого-цифровом преобразовании в вычислительной технике, в импульсных системах автоматики и др.

  При передаче непрерывных сигналов обычно достаточно передавать не сам сигнал, а лишь последовательность его мгновенных значений, выделенных из исходного сигнала по определённому закону. К. с. производится по времени, уровню или по обоим параметрам одновременно. При К. с. по времени сигнал через равные промежутки времени М прерывается (импульсный сигнал) либо изменяется скачком (ступенчатый сигнал, рис.). Например, непрерывный сигнал, проходя через контакты периодически включаемого электрического реле, преобразуется в последовательность импульсных сигналов. При бесконечно малых интервалах включения (отключения), т. е. при бесконечно большой частоте переключений контактов, получается точное представление непрерывного сигнала. При К. с. по уровню соответствующие мгновенные значения непрерывного сигнала заменяются ближайшими дискретными уровнями, которые образуют дискретную шкалу квантования. Любое значение сигнала, находящееся между уровнями, округляется до значения ближайшего уровня.

  При бесконечно большом числе уровней квантованный сигнал превращается в исходный непрерывный сигнал.

  Лит.: Харкевич А. А., Борьба с помехами, 2 изд., М., 1965; Маркюс Ж., Дискретизация и квантование, пер. с франц., М., 1969.

  М. М. Гельман.

Большая Советская Энциклопедия (КВ) - i009-001-201061636.jpg

Квантование сигнала: а — по времени; б — по уровню; x(t) — исходный сигнал; x(t) — квантованный сигнал; Dt — интервал квантования; Dх — уровень квантования.

Квантовая жидкость

Ква'нтовая жи'дкость, жидкость, свойства которой определяются квантовыми эффектами. Примером К. ж. является жидкий гелий при температуре, близкой к абсолютному нулю. Квантовые эффекты начинают проявляться в жидкости при достаточно низких температурах, когда длина волны де Бройля для частиц жидкости, вычисленная по энергии их теплового движения, становится сравнимой с расстоянием между ними. Для жидкого гелия это условие выполняется при температуре 3—2 К.

  Согласно представлениям классической механики, с понижением температуры кинетическая энергия частиц любого тела должна уменьшаться. В системе взаимодействующих частиц при достаточно низкой температуре последние будут совершать малые колебания около положений, соответствующих минимуму потенциальной энергии всего тела. При абсолютном нуле температуры колебания должны прекратиться, а частицы занять строго определённые положения, т. е. любое тело должно превратиться в кристалл. Поэтому самый факт существования жидкостей вблизи абсолютного нуля температуры связан с квантовыми эффектами. В квантовой механике действует принцип: чем точнее фиксировано положение частицы, тем больше оказывается разброс значений её скорости (см. Неопределённостей соотношение). Следовательно, даже при абсолютном нуле температуры частицы не могут занимать строго определённых положений, а их кинетическая энергия не обращается в нуль, остаются так называемые нулевые колебания. Амплитуда этих колебаний тем больше, чем слабее силы взаимодействия между частицами и меньше их масса. Если амплитуда нулевых колебаний сравнима со средним расстоянием между частицами тела, то такое тело может остаться жидким вплоть до абсолютного нуля температуры.