В конце 60-х гг. и начале 70-х гг. началось освоение более крупных энергоблоков единичной мощностью 500 и 800 Мвт для ТЭС суммарной мощностью по 4—6 Гвт (в районах Экибастузского и Канско-Ачинского угольных месторождений). На очереди сооружение ещё более крупных электростанций с энергоблоками-гигантами по 1,2 Гвт. В 1975 состоялась закладка главного корпуса под первый блок-гигант на Костромской ГРЭС.

  Значит. увеличение доли газа в топливном балансе СССР и высокая эффективность этого вида топлива делают целесообразным использование в теплоэнергетике газотурбинных установок (ГТУ). В СССР первые работы по ГТУ были осуществлены в начале 30-х гг. (Г. И. Зотиков, В. В. Уваров), тогда же под рук. В. М. Маковского была спроектирована первая советская газовая турбина. Основное направление развития газотурбостроения — повышение мощности установок и усовершенствование технологии производства жароупорных сталей. Экономический эффект внедрения газотурбинных станций зависит от мощности установок и температуры газа на входе в турбину. При мощности 50 Мвт и температуре газа на входе 650—750 °С ГТУ становятся конкурентоспособными по сравнению с лучшими паровыми установками. Ещё более экономичными являются парогазовые установки (ПГУ), разработка которых была начата в ЦКТИ (А. Н. Ложкин, А. А. Канаев) в 1945—47. В середине 70-х гг. в эксплуатации на Невинномысской ГРЭС находится ПГУ мощностью 200 Мвт.

  Широкое развитие в СССР получила теплофикация. По тепловым нагрузкам, мощностям ТЭЦ 11 котельных, удельному отпуску тепла, длине тепловых сетей СССР значительно опережает другие страны мира. Централизованные мощные источники тепла покрывают около 75% всей тепловой нагрузки городов и промышленных районов страны (из них ТЭЦ — почти половину нагрузки).

  За годы развития теплоэнергетики в СССР сформировались и выросли многочисленные научные коллективы. Выдающуюся роль в вопросах современной теплоэнергетики играют работы В. П. Глушко, Н. А. Доллежаля, В. А. Кириллина, М. А. Стыриковича, С. А. Христиановича, А. Е. Шейндлина, Г. Н. Кружилина и мн. др. Основные исследования по вопросам теплоэнергетики проводятся в Государственном научно-исследовательском энергетическом институте им. Г. М. Кржижановского, Всесоюзном научно-исследовательском теплотехническом институте им. Ф. Э. Дзержинского (ВТИ), Московском энергетическом институте (МЭИ), Центральном котлотурбинном институте им. И. И. Ползунова (ЦКТИ, Ленинград), институте теплоэнергетики АН УССР (Киев), Всесоюзном научно-исследовательском и проектном институте энергетической промышленности (ВНИПИ Энергопром), в институте «Теплоэнергопроект» (ТЭП, оба в Москве), на ряде заводов энергетического машиностроения и др.

  См. также Теплоэнергетика, Теплотехника.

  Ядерная энергетика. Развитие ядерной энергетики как самостоятельной отрасли энергетического производства берёт начало с пуска в 1954 в г. Обнинске (Калужская область) первой в мире атомной электростанции (АЭС) мощностью 5 Мвт (Обнинская АЭС). Работы по созданию АЭС, проводимые под общим руководством И. В. Курчатова, были выполнены за весьма короткий срок — 4,5 года. Опыт строительства и эксплуатации Обнинской АЭС был обобщён в докладе, представленном Советским Союзом в 1955 на 1-й Международной конференции по мирному использованию атомной энергии, и показал реальную возможность эффективного использования новых энергетических ресурсов в мирных целях. Этот опыт послужил основой для дальнейшего успешного развития ядерной энергетики в СССР.

  Период с 1954 до конца 60-х гг. характеризовался разработкой, сооружением и эксплуатацией единичных опытно-промышленных АЭС относительно небольшой мощности. В результате опытной проверки было отобрано несколько типов ядерных реакторов на тепловых нейтронах и АЭС, наиболее соответствующих в техническом и экономическом отношении задачам крупномасштабного ядерного энергетического производства. Так, уран-графитовый реактор канального типа (замедлитель — графит, теплоноситель — вода, протекающая под давлением через каналы в активной зоне), примененный на Обнинской АЭС, стал принципиальной конструктивной основой 1-го (1964) и 2-го (1967) энергоблоков Белоярской АЭС им. И. В. Курчатова мощностью соответственно 100 и 200 Мвт. Другим типом ядерного реактора, получившим наибольшее развитие в тот же период, был водо-водяной энергетический реактор (ВВЭР) корпусного типа (замедлитель нейтронов — вода, одновременно отводящая тепло от тепловыделяющих элементов, размещенных в стальном корпусе). Опытно-промышленные реакторы такого типа были установлены на 1-м и 2-м энергоблоках Нововоронежской АЭС им. 50-летия СССР (пущены в 1964 и 1969, их мощность соответственно 210 и 365 Мвт).

  Успешная эксплуатация опытно-промышленных энергоблоков первых АЭС и накопленный на этой базе значит. опыт в области ядерной энергетики позволили с начала 70-х гг. приступить к этапу создания и освоения промышленных энергоблоков, данные которых по выработке электроэнергии и использованию установленной мощности сопоставимы по конкурентоспособности с данными электростанций, работающих на твёрдом органическом топливе. В период 1971—75 были введены в действие реакторы типа ВВЭР мощностью 440 Мвт (ВВЭР-440) на 3-м и 4-м энергоблоках Нововоронежской АЭС. Началось серийное строительство АЭС с 2 реакторами по 440 Мвт. Следующий шаг в развитии реакторов этого типа — строительство АЭС с 2 реакторами мощностью 1000 Мвт (ВВЭР-1000). Заканчивается (1977) строительство одного из таких реакторов на Нововоронежской АЭС (после ввода его в действие мощность АЭС достигнет 2,5 Гвт). 2 энергоблока по 1000 Мвт предполагается пустить (1-я очередь) на Калининской АЭС. Работы по усовершенствованию и развитию уран-графитовых реакторов канального типа привели к созданию одноконтурного кипящего реактора РБМК мощностью 1000 Мвт (РБМК-1000). Такие реакторы установлены на 1-м (1973) и 2-м (1975) энергоблоках Ленинградской АЭС им. В. И. Ленина и на Курской АЭС. Строится (1977) Игналинская АЭС (Литовская ССР) с реакторами РБМК-1500; ведётся проектирование энергоблока с реактором такого типа мощностью 2,4 Гвт. В 1976—80 предполагается осуществлять дальнейшее наращивание ядерных энергетических мощностей страны путём строительства АЭС с реакторами ВВЭР-440, ВВЭР-1000, РБМК-1000 и РБМК-1500.

  В соответствии с решениями 25-го съезда КПСС в 1976—80 предполагается продолжить строительство АЭС с реакторами мощностью 1—1,5 Гвт, обеспечить ввод в действие на АЭС мощности в размере 13—15 Гвт (примерно пятая часть от всей электрической мощности, вводимой за пятилетие) при опережающем развитии ядерной энергетики в Европейской части СССР. Для выполнения этих задач предусматривается организовать серийное производство для АЭС реакторов на тепловых нейтронах и турбоагрегатов к ним единичной мощностью не менее 1 Гвт, а также осуществить разработку комплектного оборудования для энергоблоков на тепловых нейтронах мощностью до 1,5 Гвт.

  Одним из важнейших направлений развития ядерной энергетики является реализация возможности наиболее рационального использования природных запасов урана и тория. В современных реакторах на тепловых нейтронах энергия ядерного топлива используется лишь на несколько процентов. Отработанное топливо можно использовать повторно (и многократно), очистив его от продуктов деления и шлаков; при этом расход естественного урана сокращается в 2—3 раза. Однако практически такая задача может быть осуществлена лишь тогда, когда отработанного топлива накопится достаточное количество. Реакторы на быстрых нейтронах позволяют существенно (в десятки раз) повысить эффективность использования ядерного сырья. В реакторах этого типа наряду с расходованием ядерного топлива осуществляется его расширенное воспроизводство за счёт вовлечения в энергетический цикл 238U. После создания экспериментальных и опытных образцов реакторов в 1973 в г. Шевченко (Казахская ССР) была пущена опытно-промышленная АЭС с реактором на быстрых нейтронах мощностью 350 Мвт (БН-350). Для 3-го энергоблока Белоярской АЭС ведётся строительство реактора на быстрых нейтронах мощностью 600 Мвт (БН-600). В 1976—1980 строительство и освоение реакторов такого типа предполагается вести ускоренными темпами.