Хотя теорема Бернулли и является более общей и более точной, чем вышеприведенные положения с равно вероятными альтернативами, на все-таки должна интерпретироваться, согласно нашему настоящему определению «вероятности», способом, аналогичным вышеприведенному. Является фактом, что если мы составим все числа, которые состоят из 100 знаков, каждый из которых есть или 1, или 2, то около четверти из них будут иметь 49, или 50, или 51 знак, равный 1, почти половина будет иметь 48, или 49, или 50, или 51, или-52 знака, равных 1, более половины будет иметь от 47 до 53 знаков, равных 1, и около трех четвертей будет иметь от 46 до 54 знаков. По мере того как число знаков будет увеличиваться, будет возрастать и преобладание случаев, в которых единицы и двойки будут почти полностью уравновешиваться.

Вопрос, почему этот чисто логический факт должен рассматриваться как дающий нам хорошее основание ожидать, что, если мы бросим монету очень много раз, мы действительно получим приблизительно равное число выпадений ее лицевой и оборотной сторон, является совершенно другим вопросом, включающим в себя в дополнение к логическим законам законы природы. Я упоминаю об этом только для того, чтобы подчеркнуть тот факт, что я сейчас не рассматриваю этого.

Я хочу подчеркнуть то, что в вышеприведенной интерпретации нет ничего касающегося возможности и ничего, что по существу дела предполагает незнание. Здесь дается только исчисление членов класса В и определение того, какая их пропорция принадлежит также и к классу А.

Иногда утверждают, что мы нуждаемся в аксиоме равновероятности, например, в аксиоме, что выпадение лицевой и оборотной сторон монеты равновероятно. Если это значит, что в действительности они выпадают с приблизительно равной частотой, то это предположение не является необходимым для математической теории, которая как таковая не имеет дела с действительными событиями.

Рассмотрим теперь возможные применения определения конечной частоты к случаям вероятности, которые могут казаться стоящими вне ее.

Во-первых, при каких условиях можно распространить это определение на бесконечные совокупности? Поскольку мы определили вероятность как дробь, а дроби не имеют смысла, когда числитель и знаменатель бесконечны, постольку наше определение можно расширить только в том случае, когда имеются какие-то средства перейти к пределу. Это требует, чтобы все о, в отношении которых мы должны установить вероятность того, что они суть b, представляли бы собой последовательность, являющуюся на деле рядом (progression), так чтобы они были даны как а1, a2, a3, … an, где для каждого конечного целого числа n существовало бы соответствующее an, и наоборот. Мы можем тогда обозначить через «Pn» пропорцию всех а до an, включительно, которые принадлежат b. Если, по мере того, как n увеличивается, pn стремится к пределу, то мы можем определить этот предел как вероятность того, что а будет b. Этот предел зависит от порядка следования всех о и поэтому является пределом их как последовательности, а не как класса. Мы должны, однако, отличать случай, в котором значение Pn как бы колеблется около своего предела, от случая, в котором оно стремится к пределу только с одной стороны. Если мы многократно бросаем монету, то число выпадений лицевой стороны будет иногда больше половины всех бросаний, а иногда меньше; таким образом, pn как бы колеблется около предела 1/2. Но если мы возьмем пропорцию простых чисел до n (среди всех чисел меньших), то она стремится к пределу нуль только с одной стороны: для любого конечного n величина pn есть определенная положительная дробь, которая для больших значений n приблизительно равна 1/1п n. Однако 1/1n n стремится к нулю по мере того, как n бесконечно возрастает. Таким образом, пропорция простых чисел стремится к нулю, но мы не можем сказать, что «ни одно целое число не является простым»; мы можем сказать, что шанс того, что целое число будет простым числом, является бесконечно малым, но не нулем. Ясно, что шанс того, что целое число будет простым, будет больше, чем шанс того, что оно будет, скажем, и четным и нечетным, хотя этот шанс меньше, чем любая конечная дробь, как бы мала она ни была. Я сказал бы, что когда шанс, что некое о есть b, равняется нулю, мы можем сделать вывод, что «ни одно а не есть b», но когда этот шанс бесконечно мал, мы не можем сделать такого вывода.

Следует заметить, что если мы только не делаем какого-либо предположения о ходе вещей в природе, мы не можем использовать этот метод стремления к пределу, когда имеем дело с последовательностью, которая определена эмпирически. Например, если мы многократно бросаем данную монету и обнаруживаем, что число выпадении лицевой стороны — по мере того как мы продолжаем бросание — непрерывно стремится к пределу 1/2, то это не уполномочивает нас делать предположение, что таковым действительно стал бы этот предел, если бы мы смогли сделать нашу последовательность бросаний бесконечной. Может, например, быть, что если n есть число бросаний, то пропорция выпадении лицевой стороны приближается не строго к 1/2, а к где N есть число гораздо большее, чем то, которого мы можем достичь в действительном эксперименте. В этом случае наши индукции становились бы эмпирически фальсифицированными как раз тогда, когда мы думали бы, что они прочно установлены. Или опять-таки с любой эмпирической последовательностью могло бы случиться, что через некоторое время она перестала бы подчиняться закону и перестала бы в каком бы то ни было смысл стремиться к пределу. Если в таком случае вышеприведенное распространение нашего определения на бесконечные последовательности нужно применить к эмпирическим последовательностям, то мы должны будем ввести какую-то индуктивную аксиому. Без этого нет основания ожидать, что более поздние части такой последовательности будут продолжать подчиняться тому закону, которому подчиняются более ранние ее части.

В обычных эмпирических суждениях вероятности, таких, например, которые содержатся в прогнозах погоды, имеется смесь различных элементов, которые важно отделить друг от друга. Самым простым предположением — чрезмерно упрощенным здесь для целей иллюстрации — является предположение на основе наблюдения какого-либо симптома, который, скажем, в девяноста процентах случаев, в которых он прежде наблюдался, сопровождался дождем. В этом случае, если бы индуктивные аргументы были столь же бесспорны, как и дедуктивные, мы сказали бы, что «имеется девяностопроцентная вероятность дождя». Это значит, что настоящий момент относится к определенному классу (классу моментов, когда вышеупомянутый симптом налицо), девяносто процентов членов которого являются моментами, предшествующими дождю. Это вероятность в уже разобранном нами математическом смысле. Но не только это делает нас неуверенными в отношении наступления дождя. Мы не уверены также и в отношении бесспорности самого вывода; мы не чувствуем уверенности в том, что за этим симптомом будет в будущем следовать дождь в девяти случаях из десяти. И это сомнение может быть двух видов — научным и философским. Сохраняя в общем полное доверие к методам науки, мы можем чувствовать, что в этом случае слишком мало данных, чтобы обеспечить индукцию, или что не проявлено достаточной заботы для элиминирования других обстоятельств, которые также могут быть налицо и могут быть более неизменными предшественниками дождя. Кроме того, записи могут быть сомнительными: они могли быть испорчены дождем и стать недоступными, для расшифровки или могли быть сделаны человеком, о котором вскоре после этого стало известно, что он ненормален. Такие сомнения относятся к научным методам, но существуют также сомнения, выдвинутые Юмом: является ли индуктивный метод действительным или только удобной для нас привычкой? Все или любое из этик оснований могут заставить нас колебаться в отношении девяностопроцентного шанса дождя, в который наши свидетельства склоняют нас верить.

В случаях такого рода мы имеем иерархию вероятностей. Первая ступень: вероятно, будет дождь. Вторая ступень: вероятно, симптомы, которые я заметил, являются признаками вероятного дождя. Третья ступень: вероятно, определенного рода события делают определенные будущие события вероятными. Из этих трех ступеней первая характеризует обыденный здравый смысл, вторая есть уровень науки и третья — философии.