Иллюстрируем это еще раз примером с самым высоким человеком в Соединенных Штатах и шансом, что он живет в штате Айова. Здесь, во-первых, мы имеет описание d, приложимое к одному и только одному человеку из числа названных людей А1, А2, … an, где n есть число жителей Соединенных Штатов. Это значит, что одно и только одно из предложений «d= Аr» (где r обозначает любого жителя от 1 до n) известно как истинное, но мы не знаем, какое именно. Если это действительно есть все наше относящееся к делу знание, то мы предполагаем, что любое из предложений «d=Ar' столь же правдоподобно, как и любое другое. В этом случае каждое имеет правдоподобие 1/n. Если в штате Айова имеется m жителей, то предложение «d живет в штате Айова» эквивалентно дизъюнкции m предложений «d= Аr» и, следовательно, имеет m раз правдоподобие любого из них, поскольку они взаимно исключают друг друга. Следовательно, оно имеет степень правдоподобия, измеряемую дробью m/n,
Конечно, в вышеприведенной иллюстрации предложения «d = Ar» не все одного уровня. Свидетельство позволяет нам исключить детей, людей низкого роста и, возможно, женщин. Это показывает, что применение этого принципа связано с затруднениями, но это не значит, что он ложен.
Случай с вытаскиванием карты из колоды ближе подходит к осуществлению условий, требуемых принципом. Здесь описание «d» есть «карта, которую я собираюсь вытащить». Все 52 карты имеют то, что мы можем рассматривать как названия: «двойка пик» и так далее Мы имеем, таким образом, 52 предложения «d = Аr», из которых одно и только одно истинно, но мы не имеем никаких данных, которые склоняли бы нас в пользу одного, а не какого-либо другого. Следовательно, правдоподобие каждого равно 1/52. Если мы это признаем, то это связывает правдоподобие с математической вероятностью.
Мы можем, следовательно, сформулировать как возможную форму «принципа индифферентности» следующую аксиому: «Если дано описание d, относительно которого мы знаем, что оно применимо к одному и только одному из объектов а1, a2, … an, и если дано, что мы не имеем знания относительно того, к какому из этих объектов приложимо это описание, тогда n предложений «d=ar» (1 меньше или равно r меньше или равно n) все равно правдоподобны и, следовательно, каждое имеет правдоподобие, измеряемое дробью 1/n».
Эта аксиома является более ограниченной, чем принцип недостаточного основания, как он обычно формулируется. Мы должны исследовать, будет ли она достаточной, а также имеем ли мы основание верить ей.
Сначала сравним вышеизложенное с принципом индифферентности Кейнса, рассмотренным нами в предшествующей главе. Вспомним, что этот принцип гласит: вероятности p и q в отношении данного свидетельства равны, если (1) свидетельство симметрично по отношению к p и q, (2) p и q «неделимы», то есть ни одно из них не является дизъюнкцией предложений той же самой формы, что и оно само. Мы решили, что это можно упростить: мы говорили, что нужно, чтобы p и q были бы значениями одной пропозициональной функции, скажем p = f(a) и q = f(b), чтобы «fx» не содержало ни a, ни b, и что, если свидетельство содержит упоминание a, скажем, в форме f(a), то оно должно также содержать y(b) и, наоборот, где yx в свою очередь не должно упоминать а или b. Этот принцип является до некоторой степени более общим, чем сформулированный в предшествующем абзаце: он имплицирует последний, но я сомневаюсь, имплицирует ли последний его. Мы, возможно, можем принять более общий принцип и переформулировать его следующим образом: «Если даны две пропозициональные функции fx и yx, ни одна из которых не упоминает о или b, или если и упоминает их, то упоминает симметрично, тогда, при данных ya и yb, два предложения fa и fb имеют равное правдоподобие».
Этот принцип, если его принять, позволяет нам выводить правдоподобность из математической вероятности и делает все предложения математической теории пригодными для измерения степеней правдоподобия в случаях, к которым применима математическая теория.
Попробуем применить вышеупомянутый принцип к случаю с числом n шаров в сумке, где известно, что каждый шар или белый, или черный; стоит вопрос: какова вероятность, что в сумке содержится х белых шаров? Лаплас допускал, что каждое значение x от 0 до A равно вероятно, так что вероятность данного х есть 1/(n + 1). С чисто математической точки зрения это правильно, если только мы начинаем с пропозициональной функции: х = число белых шаров. Но если мы начинаем с пропозициональной функции: х есть белый шар, то мы получим совсем другой результат. В этом случае имеется много способов получения х шаров. Первый шар может быть получен n способами; когда он получен, следующий может быть получен n — 1 способами и так далее Таким образом, число способов получения х шаров есть
Это есть число способов, которыми может быть получено х белых шаров. Чтобы получить вероятность числа х белых шаров, мы должны разделить это число на сумму чисел способов получения 0 белых шаров, или 1, или 2, или 3, или … или n. Легко показать, что сумма равна 2». Следовательно, шанс получить ровно х белых шаров достигается в результате деления вышеупомянутого числа на 2». Назовем его «p (A, r) ".
Этот шанс имеет максимум, когда х = 1/2n, если n четное число, или когда х = 1/2n +- 1/2, если n есть нечетное число. Его значение, когда х или n-х мало, очень мало, если n — большое. С чисто математической точки зрения эти два очень различных результата одинаково правильны. Но когда мы подходим к измерению степеней правдоподобия, между ними обнаруживается большая разница Допустим, что у нас независимо от цвета есть какой-либо способ, с помощью которого мы можем различать шары; например, пусть они последовательно вынимаются из сумки и назовем первый вынутый d1, второй вынутый d2; и так далее Обозначим через «a " «белые», через «b» «черные» и поставим 'fa» вместо «белый цвет есть цвет a», «fb» вместо 'черный цвет есть цвет а1». Данные говорят, что верно или fa или fb, но не оба. Это симметрично, и, следовательно, на основании свидетельства данных fa и fb имеют одинаковое правдоподобие, то есть «d1 — белый» и «d1 — черный» имеют одинаковое правдоподобие. Это же самое рассуждение применимо к d2, d3, …, dn. Таким образом, для каждого шара степени правдоподобия белого и черного равны. И, следовательно, как показывает простое вычисление, степень правдоподобия х белых шаров есть p (n, r), где предполагается, что х лежит между 0 и n, включая и их самих.
Следует отметить, что в измерении степеней правдоподобия мы предполагаем, что данные не только верны, но и исчерпывающи по отношению к нашему знанию, то есть мы предполагаем, что мы не знаем ничего относящегося к делу, кроме того, что упоминается в данных. Следовательно, для данного человека в данное время существует только одно правильное значение для степени правдоподобия данного предложения, тогда как в математической теории многие значения одинаково правильны в отношении многих различных данных, которые могут быть чисто гипотетическими.
В применении результатов математического исчисления вероятности к степеням правдоподобия мы должны тщательно выполнять два условия. Во-первых, случаи, которые образуют основу математического перечисления, все должны быть равно правдоподобны по свидетельству в их пользу; во-вторых, свидетельство должно включать все наше относящееся к нему знание. Следует сказать несколько слов в отношении первого из этих условий.
Каждое математическое исчисление вероятности начинает с какого-либо основоположного класса, вроде определенного числа бросаний монеты, определенного числа бросаний игральных костей, колоды карт, совокупности шаров в сумке. Каждый член этого основоположного класса считается за единицу. Из него вывели другие логически производные классы, например класс n последовательностей 100 бросаний монеты. Из этих n последовательностей мы можем выделить подкласс бросаний, состоящий из 50 выпадений монеты лицевой стороной и 50 — упавших оборотной стороной. Или, взяв колоду карт, мы можем образовать класс возможных «игроков», то есть наборов из 13 карт, и далее исследовать, какие из них содержат 11 карт одной масти. Дело в том, что частоты исчисляются, всегда применяются к классам, имеющим какую-то структуру, определяемую логически по отношению к основоположному классу, тогда как основоположный класс в целях разрешения проблемы рассматривается как состоящий из членов, не имеющих логической структуры, то есть их логическая структура не относится к делу.