Просматривая научные публикации Эйнштейна (я вынужден был использовать для этого русский сборник его избранных трудов, изданный в 1965 г., поскольку немецкого языка я не знаю, а большинство его работ не были переведены на английский вплоть до 1993 года!), я столкнулся с разительной переменой стиля его работ, произошедшей в 1912 г. До этого его статьи поражали своей элегантностью, глубочайшей интуицией и умеренным использованием математики. Большую часть его рассуждений я и мои друзья в неизменном виде используем сейчас, в девяностые годы XX века, читая курсы лекций по теории относительности. Сделать их лучше не удалось никому. Начиная же с 1912 г. работы Эйнштейна наполняются сложными математическими выкладками, которые, впрочем, перемежаются глубоким анализом сути физических законов. Нет сомнения, что именно комбинация физической интуиции и математической культуры, которой из всех физиков, занимавшихся теорией гравитации в 1912–1915 гг., обладал только Эйнштейн, привела его к открытию релятивистских законов гравитации.

Однако Эйнштейну использование математических методов давалось с большим трудом. Как позднее говорил Гильберт: «В Геттингене любой мальчишка понимает четырехмерную геометрию лучше, чем Эйнштейн. И все же именно он сделал это [сформулировал релятивистские законы гравитации], а не кто-то из математиков». Он сделал это потому, что одной математики было недостаточно, было необходимо гениальное физическое предвидение Эйнштейна.

Конечно, Гильберт преувеличивал. Эйнштейн был очень неплохим математиком, хотя его математическая техника не шла ни в какое сравнение с его пониманием физики. В результате, его выкладки, сделанные после 1912 г., почти никогда не используются в оригинальном виде. Последователи научились делать их гораздо лучше. И по мере того, как теоретическая физика с годами быстро становилась все более и более математической, роль Эйнштейна становилась в ней все менее и менее заметной. Его факел подхватили другие.

3 ЧЕРНЫЕ ДЫРЫ ОТКРЫТЫ И ОТВЕРГНУТЫ

глава, в которой законы искривленного пространства Эйнштейна предсказывают черные дыры, а сам Эйнштейн их отвергает

«Важным результатом этого исследования, — писал Эйнштейн в технической статье в 1939 г., — является объяснение того, почему «Швардшильдовские сингулярности» не существуют в физической реальности». Этими словами он категорически отрекался от своего собственного открытия: черных дыр, возможность существования которых предсказывала общая теория относительности.

К этому времени были известны лишь некоторые свойства черных дыр, полученные как следствия из законов Эйнштейна, и даже названия своего они еще не получили; их называли «Шварцшильдовские сингулярности». Тем не менее, уже было ясно, что любой объект, попавший в черную дыру, никогда не сможет вернуться обратно и даже не сможет послать оттуда никакого сигнала. Этого было достаточно, чтобы убедить Эйнштейна и большинство других физиков тех лет в том, что черные дыры — это совершено противоестественные объекты, которым не место в реальном мире. Законы физики, считали они, должны каким-то образом защищать Вселенную от подобных монстров.

Что же такого узнали исследователи о черных дырах, что вызвало такое неприятие Эйнштейна? Сколь достоверным можно было считать их предсказание общей теорией относительности? Как мог Эйнштейн отвергать это предсказание и в то же время сохранять уверенность в правильности своих релятивистских законов? Ответы на эти вопросы следует искать в XVIII веке.

В течение XVIII века ученые, которых в то время называли натурфилософами (естественными философами), были уверены, что гравитация подчиняется законам Ньютона, а свет представляет собой поток частиц (корпускул), которые испускаются источником с одной и той же, универсальной скоростью. Наблюдения за движением спутников Юпитера позволили установить, что эта скорость составляет примерно 300000 километров в секунду.

В 1783 г. британский натурфилософ Митчелл, объединив корпускулярную модель света с законами тяготения Ньютона, предсказал, как должны выглядеть очень компактные звезды. Он сделал это посредством мысленного эксперимента, описание которого я приведу в несколько измененном виде.

Подбросим частицу с поверхности звезды с некоторой начальной скоростью и предоставим ей возможность двигаться свободно. Если начальная скорость мала, притяжение звезды затормозит ее, остановит и заставит упасть на поверхность. Если же начальная скорость будет достаточно велика, притяжение затормозит ее, но не сможет остановить; частица улетит прочь от звезды. Минимальная скорость, которую надо сообщить частице для того, чтобы она покинула звезду, называется «скоростью отрыва». Для частицы, стартующей с поверхности Земли, эта скорость равна 11 километров в секунду; а для того чтобы она покинула поверхность Солнца, ее начальная скорость должна составлять 617 километров в секунду, или 0,2 % от скорости света.

Используя законы Ньютона, Митчелл мог рассчитывать скорость отрыва и знал, что она пропорциональна квадрату массы звезды, деленному на ее диаметр. Таким образом, при одной и той же массе, чем меньше диаметр звезды, тем больше должна быть скорость отрыва. Объяснение этому очень простое: чем меньше диаметр, тем ближе поверхность к центру звезды и, соответственно, работа, которую надо совершить против сил гравитационного притяжения, должна быть больше.

В таком случае, рассуждал Митчелл, должен существовать критический диаметр, для которого скорость отрыва равна скорости света. Если световые корпускулы притягиваются звездой так же, как и все остальные частицы, то свет не сможет покинуть звезду, диаметр которой меньше критического. Будучи испущеными с поверхности с обычной скоростью света, эти корпускулы сначала остановятся, а затем упадут обратно на поверхность (см. рис. 3.1).

Митчеллу не составляло труда рассчитать критический диаметр. Так, для звезды, масса которой равна солнечной, он должен был составлять 5,89 километра, для звезд большей массы эта величина пропорционально увеличивается.

Черные дыры и складки времени. Дерзкое наследие Эйнштейна - i_028.png

3.1. Поведение света, испущенного звездой, диаметр которой меньше критического, согласно расчетам, сделанным Джоном Митчеллом в 1783 г. на основании корпускулярной модели света и закона тяготения Ньютона

С точки зрения законов физики, известных в XVIII веке, существование таких звезд ничему не противоречило. Поэтому Митчелл предположил, что во Вселенной может быль огромное количество таких темных звезд, невидимых с Земли, поскольку все испускаемые ими корпускулы неизбежно падают обратно. Эти темные звезды можно считать «черными дырами XVIII века».

Митчелл, который был ректором университета Торнхилл в английском городе Йоркшир, доложил о своем предсказании существования темных звезд на заседании Лондонского Королевского общества 27 ноября 1783 г. Этот доклад определенно стал сенсацией среди британских ученых. Через тринадцать лет французский философ Пьер Симон Лаплас опубликовал аналогичное предсказание в первом издании своей знаменитой работы Система мира, без ссылки на Митчелла. Это предсказание присутствовало и во втором издании (1799 г.), однако незадолго до выхода в свет третьего издания (1808 г.) Томас Юнг открыл явление интерференции света[58], что заставило натурфилософов отказаться от корпускулярной модели света в пользу волновой, разработанной Христианом Гюйгенсом. Было совершенно неясно, как притяжение звезды, описываемое законами Ньютона, действует на световые волны. Видимо, по этой причине Лаплас убрал концепцию темных звезд из третьего и последующих изданий своей книги.

* * *

Только после того как Эйнштейн сформулировал свои релятивистские законы гравитации в ноябре 1915 г., у физиков вновь появилась уверенность в том, что они понимают природу и света, и тяготения настолько хорошо, что могут рассчитать, как притяжение звезды влияет на излучаемый ею свет. Теперь они снова могли вернуться к рассмотрению темных звезд (черных дыр) Митчелла и Лапласа.

вернуться

58

Глава 10.