Менделеев составил свою таблицу эмпирически. Он ничего не знал о структуре атомов и не мог предложить внутреннего концептуального основания для своей таблицы. У нас необходимое понимание есть. Мы теперь знаем, что периодическая таблица есть отображение ритмов заполнения энергетических уровней в атомах (рис.  5.7).

Образ источника периодичности промелькнул перед нами ранее в этой главе, когда мы заметили подобие между гелием и неоном, с одной стороны, и литием и натрием, с другой, и обнаружили, что электронные структуры их атомов аналогичны: гелий и неон имеют атомы с заполненными оболочками, а в атомах лития и натрия одиночный электронзанимает s-орбиталь вне заполненных оболочек. Этот образ лежит в основании всей таблицы. Так, если переходить от атома к атому по пути возрастания атомного номера, то с каждым шагом атомный номер возрастает на единицу и потому возрастает число электронов, необходимых для компенсации заряда ядра. Каждый добавляющийся электрон занимает следующую допустимую атомную орбиталь, подчиняясь принципу запрета Паули, согласно которому одну орбиталь могут занять не более чем два электрона.

Эта последовательность соответствует внешнему виду периодической таблицы. Так, у атомов элементов из групп 1 и 2 (группы, содержащие, например, натрий и магний) s-орбиталь занята. На s-орбитали может находиться до двух электронов, что соответствует двум группам в этой части таблицы: в группе 1 на орбитали находится один электрон, а в группе 2 — два электрона. В правой стороне таблицы имеется блок из шести групп: в этих элементах электроны находятся в процессе заполнения трех p-орбиталей соответствующих оболочек атомов. На этих орбиталях может находиться до шести электронов: элементы группы 13 (такие, как бор, B) имеют один такой электрон, элементы группы 14 (такие, как углерод, C) — два, и так далее, до заполненных орбиталей в группе 18, состоящей из почти полностью инертных, так называемых благородных газов. Узкая полоса в середине таблицы, переходные металлы, состоят из элементов, в которых заполняются d-орбитали соответствующих оболочек: пять d-орбиталей могут вместить до десяти электронов, что в точности соответствует десяти элементам в каждом ряду этого блока групп. Внутренние переходные элементы являются элементами заполняются f-орбитали. В каждой оболочке имеется семь f-орбиталей, что соответствует четырнадцати членам в каждом ряду этого блока.

Мы совершили полный круг. Химики девятнадцатого века разглядели родственные отношения между элементами. Полный перечень родственных связей — настолько, насколько элементы уже были открыты — был создан Менделеевым к концу века. Однако его конструкция носила эмпирический характер, и понимания того, почему элементы приходятся друг другу кузенами, в то время быть не могло. Как же могло случиться, что один сорт вещества является родственным другому? На этот вопрос удалось пролить свет, когда в начале двадцатого века стала понятна структура атомов. Как только в 1920-х гг. были обнаружены ядра и правила, управляющие размещением электронов, немедленно стало ясно, что периодическая таблица является отображением решений уравнения Шредингера. Таблица представляет собой математическую картину вещества. С помощью двух простых идей — что электроны самоорганизуются так, чтобы занять наиболее низкий из возможных уровень энергии, и что на любой данной орбитали не могут находиться более двух электронов — устройство вещества стало доступным для понимания. Химия есть сердце понимания вещества, а в самом сердце химии лежит главное, о чем она повествует, — атомы.

Глава шестая

Симметрия

Вычисление количества красоты

Хрисипп утверждает, что красота не в элементах, а в симметрии частей. [22]

Гален
Великая идея: симметрия ставит пределы, ведет и управляет

Может ли быть так, что красота есть ключ к пониманию этого прекрасного мира? Греческий скульптор Поликлит из Аргоса, расцвет деятельности которого пришелся на 450-420 гг. до н.э., заложил основы нашего современного понимания фундаментальных частиц, когда в своем Каноне, введении в эстетику, писал, что «красота приходит мало-помалу посредством многих чисел». Поликлит писал о симметрии, динамическом равновесии расслабленных и напряженных частей человеческого тела и относительной ориентации этих частей, организующихся в гармоническое целое. Через две с половиной тысячи лет мы возвращаемся к математическим аспектам симметрии — и к симметрическим аспектам математики, — чтобы выстроить свое понимание фундаментальных сущностей, из которых высечено вещество, и динамического равновесия сил, которые удерживают эти сущности вместе. 

Если под красотой мы имеем в виду симметрию и контролируемые нарушения симметрии, Мондриана, переходящего в Моне, то красота, конечно, лежит в сердце мира. Часть этой красоты открыта для непосредственного восприятия, например, когда мы смотрим на прекрасное произведение искусства. Другая часть, однако, глубоко спрятана и неочевидна для необученного взгляда. Тысячи лет, прошедшие со времени Поликлита, были использованы для того, чтобы выкопать скрытую красоту, дать ее оценку в математической форме, и затем, используя математические средства, провести более глубокие раскопки ландшафта реальности. Как я уже подчеркивал, по мере развития науки, ее глубина и богатство возрастают за счет увеличения абстрактности ее концепций. Это возрастание нигде не прослеживается лучше, чем в открытии симметрии и в развернутом ее использовании в качестве инструмента познания.

Теперь я проведу вас, настолько подробно, насколько мне удастся, по пути, ведущем от непосредственно воспринимаемого к воображаемому, и продемонстрирую ту власть, которую дает в наши руки симметрия. Этот путь поведет нас на самый край обрыва того, что еще доступно воображению.

Объект является симметричным, если действие — которое мы называем преобразованием симметрии, — произведенное над ним, оставляет его неизменным по внешнему виду. Другими словами, если вы на мгновение закроете ваши глаза, то когда вы откроете их снова, вы не сможете сказать, совершил я какое-либо действие или нет. Представьте себе гладкий мяч без украшений; закройте на мгновение глаза, откройте их: повернул ли я шар? Действия, которые мы рассматриваем, могут быть вращением вокруг оси или отражением в зеркале, но существуют и другие преобразования симметрии, которые нам еще предстоит оценить, некоторые из которых представляют собой составные комбинации более простых действий, например, движение в пространстве (называемое трансляцией), за которым следует отражение в зеркале. Вы можете найти отражение даже в музыке. Одним особенно прозрачным примером является поддельное двухчастное сочинение «Моцарта», которое начинается так

Десять великих идей науки. Как устроен наш мир. - i_068.png

и завершается второй частью

Десять великих идей науки. Как устроен наш мир. - i_069.png

являющейся отражением первой части.

Некоторые объекты являются более симметричными, чем другие. Сфера в высокой степени симметрична — это один из самых симметричных объектов, с которыми мы обычно сталкиваемся. Подумайте о числе способов, которыми я могу изменить положение сферы, пока ваши глаза закрыты, так, что вы не сможете обнаружить это, открыв глаза. Я могу повернуть ее вокруг любой из бесконечного числа осей, проходящих через ее центр, на любой угол, лежащий между 0 и 360°. И это еще не все. Я могу представить себе зеркало, проходящее через центр сферы в любом из бесконечного числа направлений, и вы не сможете обнаружить отражение одной полусферы в другую. Есть и другие действия, которые я могу произвести в уме: я могу вообразить, что я беру каждый атом шара на прямой линии, проходящей через центр сферы, и перемещаю этот атом на равное расстояние от центра сферы с другой стороны. Таким путем я перестраиваю шар с помощью операции, известной как инверсия. Вы не сможете утверждать, что я проделал это, поскольку шар после такой инверсии выглядит точно таким же, каким был вначале.