И ещё я хотел бы остановиться на методах изучения таких объектов. Спинтронные структуры обладают огромным количеством параметров. То есть экспериментальное их изучение – это очень трудоёмкий процесс, дорогостоящий, занимает много времени и так далее. И здесь на помощь приходит, как обычно сейчас, компьютерное моделирование. И очень активно используется в настоящее время так называемый микромагнитный подход.

Магнитный слой разбивается, грубо говоря, на кирпичики, на маленькие прямоугольники. И каждый из них обладает своим собственным магнитным моментом. И причём каждый из этих кирпичиков магнитостатически взаимодействует со всеми кирпичиками, которые формирует система. И модель позволяет варьировать и физические параметры, и геометрию. То есть из таких кирпичиков можем составлять любую магнитную структуру с необходимыми физическими свойствами. И мы можем моделировать реально процесс перемагничивания. Фактически мы строим виртуальный прототип элемента, подбираем оптимальные параметры. И только после этого образец подаётся уже в лабораторию.

А.Г. С неё начинают строительство непосредственно…

К.З. Да, то есть строится виртуальный прототип, изучается его поведение. Причём, что интересно, часто обнаруживаются некие новые эффекты, которые трудно предсказать теоретически. И их экспериментально было бы достаточно сложно обнаружить. И они вот таким образом обнаруживаются, и потом можно уже это экспериментально их получить.

Где ещё используются магнитные нано-структуры? Очень широко они используются в сенсорах всевозможных. Сейчас очень быстро развивается технология так называемая MEMS, то есть микромеханические системы, микроэлектромеханические системы. Это то, что мы видели в фантастических фильмах, это маленькие жучки, паучки, маленькие роботы каких-то миллиметровых размеров, которые используются во всех областях человеческой деятельности. И для управления точной механикой этих систем активно используются также магнитные сенсоры. Также такие сенсоры используются в автомобильной промышленности, очень активно, как датчики скорости, в медицине, в аэрокосмической области, то есть поле применения их очень широкое.

А.Г. Теперь подтяните нас по теории. Почему эти нано-мостики обладают таким потрясающим эффектом?

А.З. Вообще-то вопрос в стадии исследования. Но один из ответов, один из возможных ответов, может быть основан на эффекте квантового сопротивления нано-мостиков. Известно, что сопротивление нано-контакта квантуется, имеется квант сопротивления. И вот тогда, когда диаметр мостика меньше некоторого критического, то мостик практически закрыт. И мы можем его закрыть, скажем, сделав так, что спины в берегах мостика направлены навстречу друг другу. Тогда он закрыт. Полностью закрыт. Это квантовый эффект. Это, если хотите, бесконечное сопротивление. Когда мы делаем их параллельными, он открывается. То есть фактически он то закрыт, то открыт – это реальный факт. Значит, вопрос заключается в том, действительно ли он реализуется в тех экспериментах, которые сейчас сделаны. Здесь пока вопрос открыт.

К.З. Но сотни тысяч процентов наблюдались.

А.З. Это наблюдалось, да.

Мне хотелось бы сейчас действительно вернуться к физике. Вот в области магнитных нано-структур, в области суперпарамагнетизма имеется много интересных квантовых эффектов, где встречаются квантовые и классические закономерности, как мы сказали. И я, по ограниченности времени, конечно, могу говорить только об одном эффекте. Таким интересным эффектом является явление магнитной релаксации магнитных материалов. Давайте начнём с классики. Если мы возьмём обычный постоянный магнит, который мы в нашей обыденной жизни привыкли видеть, и намагнитим его вдоль определённого направления, например, вдоль лёгкой оси, то он практически постоянно будет находиться в этом состоянии равновесия. Хотя имеется другое состояние равновесия, противоположное ему.

Но ситуация меняется, когда мы уменьшаем размер элемента, объём элемента. Первым обратил на это внимание Луи Неель, знаменитый французский физик. Он изучал магнетизм земных пород и обратил внимание, что действительно, когда частички становятся маленькими, то они могут спонтанно размагничиваться, благодаря тепловым флуктуациям, как Костя нам об этом уже рассказал. И он вывел формулу для скорости спонтанного размагничивания, она выглядит как некая экспонента знаменитой формулы Аррениуса и показывает, что скорость спонтанного размагничивания, т.е. скорость релаксации, уменьшается, когда температура стремится к нулю, и она обращается в нуль, когда температура идёт в ноль. Но это с точки зрения здравого смысла это естественно. Тепловые флуктуации идут в ноль, и, значит, естественно, никакого перемагничивания спонтанного нет.

Когда начали делать эксперименты, обнаружили, что, в общем-то, всё укладывается хорошо в теорию Луи Нееля. Но когда начали экспериментировать с ещё более мелкими, нанометровыми частицами, обнаружили интересный факт. Оказалось, что действительно, она идёт по Неелю, но когда мы приходим к низким температурам, порядка Кельвина, оказывается, что скорость становится постоянной и при дальнейшем понижении температуры не меняется. Это удивительный факт. Довольно быстро была выдвинута идея, что здесь мы имеем дело с макроскопическим квантовым туннелированием намагниченности частицы.

А.Г. Макроскопическим?

А.З. Да, магнитный момент всей частицы, макроскопический, он туннелирует как целое. Это напоминает, помните, кота Шрёдингера. Так вот эта частица, этот магнитный момент как целое, он переходит в другое состояние. Удивительный факт.

А.Г. То есть этот туннельный эффект, по сути дела – макроскопический?

А.З. Макроскопический, да. Конечно, это колоссально интересная штука, но не все физики согласились с этой идеей. Возражали, что частицы очень различны по размерам, дисперсия размеров есть. Поэтому скорости, размагничивая в разных частицах, тоже будут сильно различаться. И тут, в общем, можно всё что угодно получить. То есть возник тупик некий.

Но оказалось так, что параллельно с этим экспериментом появился новый интересный объект в суперпарамагнетизме. Это магнитные молекулы. Вот они здесь показаны. Магнитные молекулы – это органические молекулы, в которых имеются магнитные ионы. То есть это тоже, можно сказать, магнит, но на молекулярном уровне. И в отличие от магнитных частиц, тут они все калиброваны, так сказать, от Бога размер задан. И поэтому, если работать с такими объектами, уже никаких проблем с размером не возникает.

Итальянцы из Флоренции под руководством профессора Гаттески, они такие материалы синтезировали, ну, и конечно, физики их сразу подхватили, Mn-12, вот это нижняя левая молекула. И её взяли как основную и модельную, и на ней провели эксперименты. Эти эксперименты буквально несколько лет тому назад были сделаны. Сделаны они были в Гренобле и Нью-Йорке. И они, эти эксперименты, полностью доказали, что, действительно, здесь мы имеем дело с макроскопическим тунеллированием намагниченности. Вот это ответ на ваш вопрос. Электроны там только квантовыми свойствами обладают или в целом весь кластер? Вот здесь оказывается, что весь кластер проявляет квантовые свойства.

А.Г. А какими свойствами в данном случае обладает барьер?

А.З. Это хороший вопрос. Барьер, это фактически магнитная анизотропия, но в молекуле. И вот, молекула марганец-12, это действительно молекулярный магнит, она обладает петлёй гистерезиса, то есть у неё имеется анизотропия. То есть это магнит на молекулярном уровне. И вот это интересно и с практической точки зрения. Поскольку это магнит на молекулярном уровне, то мы можем использовать его для записи информации, т.е. одну молекулу. Конечно, эта идея очень простая, она появилась совсем недавно в «Нью-Йорк таймс», американские физики, её запустили. Сумасшедшая плотность, конечно. Она на четыре порядка больше, чем плотности современных магнитных дисков и так далее. Но идея, честно говоря, слишком сырая, слишком много трудностей, проблем на этом пути.