Дальше стали думать над другими процессами. Оказалось, что есть очень много абсолютно не объясненных процессов. Например, ТОКАМАКи. В ТОКАМАКах есть очень большая проблема: когда плазма взаимодействует со стенкой, то начинает её через какое-то время разъедать, она, как короед, двигается, и этот металл исчезает. Оказывается, что это так называемая униполярная дуга: при взаимодействии плазмы с этим металлом образуется слой ионов, который создает высокое электрическое поле. И в этом высоком электрическом поле за счет автоэлектронной эмиссии возникают эти взрывы.
То есть, стало возможным объяснить многие явления в электрических разрядах в газе. В частности, некоторые процессы так называемого коронного разряда. Это очень давно известный процесс, открытый ещё в позапрошлом веке. Но там тоже были неясны некоторые эффекты, например, так называемая «корона Тричела». Почему она импульсная? Она то возникает, то исчезает. То есть оказалось, что это явление, которое позволило объяснить многие давно изученные процессы, и как бы внешне изученные. Но никто до нас не мог проникнуть в суть этих процессов.
То есть фактически есть два результата этих исследований. Одно – это создание совершенно новой электроники, очень важной для технологии, для оборонных дел. Например, сейчас можно получать электронные пучки и мощные электромагнитные источники, которые имитируют в небольших объемах взрывы, например, атомной бомбы. Фактически, это одна из технологий, которая позволила вместе с компьютерными методами избежать натурных испытаний. Это с одной стороны. А с другой стороны, мы смогли объяснить целый ряд физических явлений и фактически совершенно по-другому к ним подойти. То есть это уже объяснение явления природы. Вот, собственно говоря, что это такое.
А.Г. А можно чуть подробнее? Что происходит как раз в этот момент, при каких температурах, за какое время? Вы уже начали говорить об этом. Какие нужны приборы при эксперименте для того, чтобы отследить этот процесс? Поскольку он происходит и при очень высокой температуре, как я понимаю, и при сильном токе, и за очень короткое время.
Г.М. Вообще говоря, парадокс состоит в том, что всё происходит просто, в обычном вакууме, между обычными двумя электродами. То есть это плоские электроды, катод плоский и анод плоский. Но когда смотришь под микроскопом, то у самого гладкого катода всегда имеются микроскопические выступы, они небольшие, но они имеются. И когда мы прикладываем между катодом и анодом электрическое поле, то на этих микроскопических выступах электрическое поле усиливается.
Положим, у нас поле миллион вольт на сантиметр, это достаточно обычное поле при приложении кратковременных импульсов. А на микроскопических остриях эти поля усиливаются ещё в сотни раз. То есть, получается примерно сотни миллионов вольт на сантиметр. При таких высоких полях возникает так называемая холодная эмиссия или автоэлектронная эмиссия. Это туннельный эффект, он довольно хорошо исследован. Ещё до появления полупроводниковых приборов его пытались активно использовать для того, чтобы создавать новые электронные приборы.
Но проблема состояла в том, что зависимость плотности тока от приложенного электрического поля настолько сильно экспоненциальна, что этот прибор очень быстро выходил из строя. То есть маленькое перенапряжение, и катод сгорает, катод просто оплавляется, и ничего не получается. И всем казалось, что всё, проблема, так сказать, закрыта, катод использовать нельзя. Но! Мы показали, что в течение короткого времени, когда взрыв произошел, эта плазма, этот взрыв испускает электронный пучок.
Я ещё раз повторяю, вначале катод холодный, но в результате взрыва плазма нагревается практически до миллионов градусов, сам катод нагревается до тысячи градусов, до таких температур, которые приводят к плавлению и испарению. Но этот процесс очень кратковременный – именно процесс нагрева, процесс взрыва длится всего единицы наносекунд, то есть миллиардные доли секунды. Взрыв произошел, смотришь, а на катоде ничего нету, и если не поглядишь в микроскоп, то ничего не увидишь.
Что нужно было для того, чтобы исследовать это явление? Что нам потребовалось, и почему, собственно говоря, взрывная эмиссия была открыта в 66 году? Мы смогли посмотреть всё это в очень мощный усилитель света, использующий электронно-оптические преобразователи, когда можно было регистрировать отдельные кванты. Потому что взрывающаяся масса здесь ничтожная – 10-13 грамма, такова масса, которая при взрыве уходит, и поэтому свечение очень слабое. В 30-е годы обычно смотрели при помощи ячейки Керра так называемой, она очень ослабляла свет, ничего увидеть было нельзя. Только благодаря тому, что мы стали смотреть с экспозицией в наносекунды и с усилением света в миллион ампер, мы смогли наблюдать, как на катоде появляется первое свечение.
Когда потом стали смотреть в электронный микроскоп, мы увидели, что это свечение сопровождается появлением кратера – кратера не видели, пока не было электронных микроскопов. Фактически, наличие электронных микроскопов, то есть прибора, который позволяет иметь высокое пространственное разрешение, и высокоскоростной фотографии, которая позволяет иметь очень большое временное разрешение, наносекундное, позволило это явление открыть. А потом уже, когда появился радиационной метод, методы определения массы и так далее, мы смогли уже определить, сколько граммов на кулон уносится. Но самое главное, я считаю, – это усилитель света с электронно-оптическим преобразователем и очень мощный микроскоп. И осциллограф, естественно, потому что нужно регистрировать очень короткий ток. Я уже говорил, что вся наша электроника работала в наносекундном диапазоне. Сейчас мы перешли уже в пикосекундный диапазон, и тут, конечно, нужен осциллограф с очень высоким временным разрешением.
А.Г. Разве хватает временного разрешения осциллографа для того, чтобы зафиксировать эти процессы с допустимой погрешностью?
Г.М. Сейчас есть осциллографы, которые позволяют регистрировать времена порядка пикосекунд. Но импульсы, которые мы получаем, это электронные пучки, световые пучки, рентгеновские пучки длительностью в сотни пикосекунд. Это уже стало нормальным, обычным явлением. И фактически сейчас появилось новое направление, которое называется «техника мощных пикосекундных импульсов», «техника пикосекундных электронных пучков». Там появляются совершенно новые возможности.
А.Г. Мы об этом чуть-чуть позже поговорим. А пока я хотел задать вам вопрос. Верно ли, что далеко не все разделяют ваш подход к объяснению того, что происходит в вольтовой дуге, несмотря на экспериментальное подтверждение вашей теории?
Г.М. Понимаете, какая ситуация. Когда, например, Лавуазье доказывал, что горение связано с окисление, его идею при жизни так и не признали, считали, что это флогистон… Люди, с которыми мы сейчас живем, всю свою научную карьеру сделали на утверждении, что дуга начинается оттого, что разогревается катод, из катода идет обычная термоэлектронная эмиссия, и так далее. И поэтому очень трудно сейчас признать, что кто-то пришел из другой области, вдруг всё исследовал и всё открыл. Я-то их очень хорошо понимаю, и, в общем-то, есть вещи, о которых мы дискутируем.
Во всяком случае, даже самые отчаянные, так сказать, противники сейчас однозначно признают, что как минимум должен существовать первый взрыв. Потому что всегда есть кратер. Откуда кратер появился? Потом – откуда берутся ионы? При взрыве совершенно очевидно, почему ионы двигаются в другую сторону. Потому что при самом взрыве, очень кратковременном, выделяется энергия до ста тысяч джоулей в грамме, это уже энергия существенно большая, чем энергия взрывчатки. Там уже образуется плазма, плазма образуется при самом процессе разогрева. И там имеются и ионы, и электроны, то есть обычная плазма. И в результате взрыва по инерции ионы летят в противоположную сторону. Этот непонятный эффект так называемых «аномальных ионов» был открыт ещё в 30-х годах. Сначала думали, что это просто пар, а потом наш ученый Плютто в Сухумском физико-техническом институте обнаружил, что это не пар, а ионы. А сейчас мы понимаем, откуда эти ионы происходят.