Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - pic_113.jpg
Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - pic_114.jpg

где — собственный вектор для намотанной струны с. Из этих определений немед-

Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - pic_115.jpg
Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - pic_116.jpg

ленно следует, что х периодична с периодом 2?R, а х периодична с периодом 2?/R, так что х есть координата на окружности радиусом R, а — координата на окружности радиусом 1/R. Более конкретно, можно рассмотреть два волновых пакета, распространяющихся из начала координат и эволюционирующих во времени, с помощью которых можно дать практическое определение расстояния. Радиус окружности, измеренный с помощью каждого из пакетов, будет пропорционален времени возвращения пакета в исходную точку. Так как состояние с энергией Е эволюционирует с фазовым множителем, пропорциональным Et, видно, что время, а, следовательно и радиус, равны t ~ 1/Е ~ R для колебательных мод и t ~ 1/Е ~ 1/R для топологических мод.

Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - pic_117.jpg

5. Для читателя, сведущего в математике, отметим, что число семейств колебательных мод струны равно половине абсолютного значения эйлеровой характеристики многообразия Калаби-Яу, как указано в примечании 16 к главе 9. Эта величина равна абсолютному значению разности

Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - pic_118.jpg

где обозначает число Ходжа (p,q). С точ-

Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - pic_119.jpg
Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - pic_120.jpg

ностью до константы эти значения равны числу нетривиальных гомологии 3-циклов (трехмерных отверстий) и числу гомологии 2-циклов (двумерных отверстий). Таким образом, хотя в основном содержании говорится о полном числе отверстий, более точный анализ показывает, что число семейств зависит от абсолютного значения разности между числами четномерных и нечетномерных отверстий. Выводы, однако, те же самые. Например, если два пространства Калаби-Яу отличаются перестановкой соответствующих чисел Ходжа и, то число семейств частиц — полное число отверстий — не изменится.

6. Название объясняется тем, что «ромбы Ходжа», математические выражения чисел отверстий различных размерностей для пространств Калаби-Яу, являются зеркальными отражениями друг друга для каждой зеркальной пары.

7. Термин зеркальная симметрия используется в физике и в других контекстах, совершенно не связанных с данным, например, в связи с понятием киральности, т. е. в связи с вопросом о том, является ли Вселенная инвариантной относительно замены правого на левое (см. примечание 7 к главе 8).

Глава 11

1. Для читателя, склонного к математической строгости рассуждений, будет понятно, что вопрос состоит в том, является ли топология пространства динамической, т. е. может ли она меняться во времени. Отметим, что хотя представление о динамических изменениях топологии часто используется в этой книге, на практике обычно рассматривается

однопараметрическое семейство пространственно-временных многообразий, чья топология меняется при изменении параметра семейства. Формально этот параметр не является временем, но в определенном контексте может с ним отождествляться.

2. Для математически подкованного читателя отметим, что процедура включает сдутие рациональных кривых на многообразии Калаби-Яу. Далее используется тот факт, что при определенных условиях образовавшаяся сингулярность может быть устранена серией последовательных раздутий.

3. К. С. Cole, New York Times Magazine, October 18, 1987, p. 20.

Глава 12

1. Цитируется по книге: John D. Barrow, Theories of Everything. New York: Fawcett-Columbine, 1992, p. 13. (В рус. пер. цитата есть в книге: Кузнецов Б. Г. Эйнштейн: Жизнь. Смерть. Бессмертие. М: Наука, 1980, с. 363.)

Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - pic_121.jpg

2. Кратко поясним различия между пятью теориями струн. Для этого отметим, что колебательные возбуждения вдоль струнной петли могут распространяться по часовой стрелке и против нее. Теории струн типов IIА и IIB отличаются тем, что в последней теории колебания в обоих направлениях идентичны, а в первой теории противоположны по форме. Противоположность в данном контексте имеет точный математический смысл, но нагляднее всего ее можно представлять в терминах вращений колебательных мод в каждой теории. В теории типа IIВ оказывается, что все частицы вращаются в одном направлении (у них одна и та же киральность), а в теории типа IIА — в разных направлениях (у них разная киральность). Тем не менее, в каждой теории реализуется суперсимметрия. Две гетеротические теории имеют аналогичные, но более эффектные отличия. Все моды колебаний по часовой стрелке выглядят так же, как и моды струн типа II (если рассматривать только колебания по часовой стрелке, то теории струн типов ПА и IIB идентичны), но колебания против часовой стрелки совпадают с колебаниями исходной теории бозонных струн. Хотя в бозонных струнах возникают неразрешимые проблемы, если рассматривать их колебания в обоих направлениях, в 1985 г. Дэвид Росс, Джеффри Харви, Эмиль Мартинек и Райан Ром (все они в то время работали в Принстонском университете и их прозвали «Принстонский струнный квартет») показали, что при использовании этих струн в комбинации со струнами типа II получается вполне согласованная теория. Однако в этом союзе была странная особенность, известная со времен работ Клода Лавлейса из университета Ратчерса 1971 г. и Ричарда Броуэра из Бостонского университета, Питера Годдарда из Кембриджского университета и Чарльза Торна из Гейнсвилльского университета (штат Флорида) 1972 г. А именно, для бозонной струны требовалось 26 пространственно-временных измерений, а для суперструны, как обсуждалось, требовалось 10. Так что гетеротические струны (от греческого, т. е. разный)

являются странными гибридами, в которых колебательные моды против часовой стрелки живут в 26 измерениях, а колебательные моды по часовой стрелке — в 10! Пока читатель окончательно не запутался, пытаясь понять этот странный союз, сообщим ему о работе Гросса и его коллег, в которой было показано, что 16 лишних бозонных измерений должны скручиваться в одно из двух торообразных многообразий очень специального вида, приводя к теориям О— и Е-гетеротических струн. Так как 16 добавочных бозонных измерений компактифицированы, каждая из этих теорий ведет себя так, как если бы в ней было 10 измерений, т.е. как теории струн типа II. В гетеротических теориях также реализован свой вариант суперсимметрии. И, наконец, теория типа I аналогична теории ИВ, за исключением того, что помимо замкнутых струн, рассмотренных в предыдущих главах, в ней имеются струны со свободными концами, называемые открытыми струнами.

3. Понятие «точный» в смысле данной главы (например, «точное» уравнение движения Земли) в действительности относится к точному предсказанию некоторой физической величины в рамках выбранного теоретического формализма. До тех пор, пока у нас не будет истинной окончательной теории (возможно, она уже есть, а возможно, ее вообще не будет) все наши теории сами являются приближениями реальности. Но это понятие приближения не имеет никакого отношения к приближениям, рассматриваемым в данной главе. Здесь нас интересует тот факт, что в рамках выбранной теории часто сложно или невозможно сделать точные предсказания. Вместо этого приходится искать эти предсказания с помощью приближенных методов в рамках теории возмущений.

4. Эти диаграммы являются струйными вариантами так называемых диаграмм Фейнмана, предложенных Ричардом Фейнманом для вычислений по теории возмущений в квантовой теории поля точечных частиц.

5. Точнее, каждая пара виртуальных струн, т. е. каждая петля конкретной диаграммы, приводит (наряду с другими более сложными слагаемыми) к мультипликативному вкладу, пропорциональному константе связи струны. Чем больше петель, тем выше показатель степени константы связи струны в ответе. Если константа связи струны меньше 1, повторные умножения сделают вклад следующих петель меньше, в противном случае эти вклады будут того же порядка или будут растут с числом петель.