Рис. 4.5. Те же условия, как и в опыте, показанном на рис. 4.4, за исключением того, что открыта левая щель.
Если открыты обе щели, то картина, предсказываемая ньютоновской корпускулярной моделью света, должна выглядеть, как показано на рис. 4.6, представляющем собой комбинацию рис. 4.4 и 4.5.
Рис. 4.6. Ньютоновская корпускулярная модель предсказывает, что когда будут открыты обе щели, картина на фотопластинке будет представлять собой объединение картин, показанных на рис. 4.4 и 4.5.
По существу, если представить ньютоновские световые корпускулы в виде маленьких дробинок, которыми вы обстреливаете преграду, то те из дробинок, которые пройдут сквозь нее, будут концентрироваться в двух полосах, положение которых соответствует положению щелей. Волновая же модель света, напротив, ведет к совершенно иному предсказанию, если открыты обе щели. Посмотрим, что происходит в этом случае.
Представим, что вместо световых волн мы рассматриваем волны на поверхности воды. Это не повлияет на результат, но такие волны более наглядны. Когда волна сталкивается с преградой, то, как показано на рис. 4.7, от каждой щели распространяется новая волна, похожая на ту, которая возникает, если бросить камешек в пруд. (Это легко проверить, используя картонный лист с двумя прорезями, помещенный в чашку с водой.) Когда волны, идущие от каждой щели, накладываются друг на друга, происходит интересное явление. При наложении двух волновых максимумов высота волны в соответствующей точке увеличивается — она равна сумме высот максимумов двух наложившихся волн. Аналогично, при наложении двух минимумов глубина впадины, образовавшейся в этой точке, также увеличивается. Наконец, если максимум одной волны совпадает с минимумом другой, они взаимно гасят друг друга. (На этом основана конструкция фантастических шумопоглощающих наушников — они определяют форму пришедшей звуковой волны и генерируют другую, форма которой в точности «противоположна» первой, что приводит к подавлению нежелательного шума.) Между этими крайними случаями — максимум с максимумом, минимум с минимумом и максимум с минимумом — расположен весь спектр частичного усиления и частичного ослабления. Если вы с компанией друзей сядете в небольшие лодки, выстроите их в линию параллельно преграде и каждый из вас будет сообщать, насколько сильно его качает при прохождении волны, результат будет похож на тот, который изображен на рис. 4.7.
Рис. 4.7. Круговые волны на воде, идущие от каждой щели, накладываются одна на другую; это приводит к тому, что в одних местах результирующая волна будет усиливаться, а в других ослабляться.
Точки с сильной качкой будут расположены там, где накладываются максимумы (или минимумы) волн, приходящих от разных щелей. Участки с минимальной качкой или полным ее отсутствием окажутся там, где максимумы волны, идущей от одной щели, будут совпадать с минимумами волны, идущей от другой щели.
Поскольку фотографическая пластинка регистрирует, насколько сильно она «раскачивается» под влиянием падающего света, из приведенных выше рассуждений, примененных к волновой картине, создаваемой лучом света, следует, что когда открыты обе щели, фотография будет иметь вид, показанный на рис. 4.8. Самые яркие участки на рис. 4.8 представляют области, в которых максимумы (или минимумы) световых волн, пришедших от разных щелей, совпадают. Темными являются участки, в которых максимум одной волны складывается с минимумом другой, приводя к взаимному погашению. Такая последовательность светлых и темных полос известна под названием интерференционной картины.
Рис. 4.8. Если свет представляет собой волну, тс в тех случаях, когда открыты обе щели, будет про исходить интерференция между волнами, прошед шими через разные щели.
Эта фотография существенно отличается от рис. 4.6, и, следовательно, требуется эксперимент, который позволил бы установить, какая из теорий права — корпускулярная или волновая. Подобный эксперимент был выполнен Юнгом, и его результат совпал с картиной, показанной на рис. 4.8, тем самым подтвердив волновую природу света. Ньютоновская теория корпускулярной природы света была отвергнута (хотя потребовалось некоторое время, прежде чем все физики согласились с этим). Доминирующая волновая теория света впоследствии получила надежное математическое обоснование в теории Максвелла.
Но Эйнштейн, низвергнувший заслуженную теорию гравитации Ньютона, похоже, возродил ньютоновскую корпускулярную модель света, введя понятие фотонов. Конечно, перед нами по-прежнему стоит вопрос: как объяснить интерференционную картину, показанную на рис. 4.8, с точки зрения корпускулярной теории? На первый взгляд можно предложить следующее объяснение. Вода состоит из молекул Н2О — «частиц» воды. Однако когда огромные количества этих молекул движутся в одном потоке, они могут создавать волны на поверхности воды, с присущими этим волнам интерференционными свойствами, показанными на рис. 4.7. Можно предположить, что в корпускулярной модели света волновые эффекты, например, интерференционные картины, возникают благодаря взаимодействию огромного числа световых корпускул — фотонов.
В действительности, однако, микромир устроен гораздо более тонко. Даже если интенсивность источника света на рис. 4.8 начнет уменьшаться вплоть до такого значения, когда в сторону преграды один за другим будут излучаться одиночные фотоны со скоростью, скажем, один фотон в десять секунд, результат на фотопластинке будет выглядеть точно так же, как показано на рис. 4.8. Если вы подождете достаточно долго, чтобы огромное число этих отдельных частиц света прошло через щели и оставило свой след в виде точек на фотопластинках, эти точки образуют показанную на рис. 4.8 интерференционную картину. Это поразительно. Как могут отдельные фотоны, последовательно проходящие через экран и независимо сталкивающиеся с фотопластинкой, «сговориться» и воспроизвести яркие и темные полосы интерференционной картины? Здравый смысл говорит нам, что каждый фотон проходит либо через левую, либо через правую щель, и результирующая картина должна быть похожа на ту, которая показана на рис. 4.6. Но это не так.
Если этот факт не поразил вас, это значит, что либо вы уже сталкивались с ним и знаете ему объяснение, либо наше описание является недостаточно наглядным. Если дело в последнем, попробуем взглянуть на это явление еще раз, но под несколько иным углом зрения. Итак, вы закрываете левую щель и пускаете фотоны на преграду, один за другим. Некоторые из них проходят через преграду, некоторые нет. Те, которые прошли, точка за точкой создают изображение на фотопластинке, которое выглядит, как показано на рис. 4.4. Вслед за этим вы проводите эксперимент с новой фотопластинкой, но на этот раз открываете обе щели. Как и следовало ожидать, вы считаете, что это только увеличит число фотонов, прошедших через преграду и попавших на фотографическую пластинку, т. е. на пластинку попадет больше света, чем в первом опыте. Но когда позднее вы изучаете полученную фотографию, вы видите, что наряду с участками, которые были темными в первом опыте и стали светлыми во втором, есть участки, которые были светлыми в первом опыте, а во втором стали темными, как на рис. 4.8. Увеличив число фотонов, попавших на фотопластинку, вы уменьшили яркость некоторых участков. Каким-то образом отдельные фотоны, разделенные во времени, смогли нейтрализовать друг друга. Подумайте о всей неординарности того, что произошло: фотоны, которые прошли через правую щель и попали на пленку в одной из темных полос на рис. 4.8, не смогли сделать этого при открытой левой щели (поэтому пленка и осталась темной). Но как могло повлиять на крошечную частицу света, прошедшую через одну щель, то обстоятельство, была ли открыта другая щель? Фейнман однажды заметил, что это так же странно, как если бы вы стреляли по экрану из пулемета, и когда были открыты обе щели, то отдельные, независимо вылетевшие пули каким-то образом нейтрализовали друг друга, оставляя непораженные участки на экране — участки, которые были поражены, когда открытой была только одна щель.