Физики отличают это возрастание напряженности при приближении к электрону, связанное с квантовыми эффектами, от собственной напряженности электромагнитного взаимодействия, возрастающей с уменьшением расстояния. Таким образом, напряженность возрастает не просто потому, что мы приближаемся к электрону, но также вследствие того, что становится видимым собственное электрическое поле электрона. Хотя мы рассматривали электрон, на самом деле эти выводы применимы к любым частицам, несущим электрический заряд. Их можно суммировать утверждением, что квантовые эффекты ведут к росту электромагнитных сил при уменьшении расстояния.

А что можно сказать о других взаимодействиях, описываемых стандартной моделью? Как изменяется их интенсивность с изменением расстояния? В 1973 г. Гросс и Фрэнк Вильчек из Принстона и независимо от них Дэвид Политцер из Гарварда исследовали этот вопрос и получили удивительный результат. Квантовое облако, состоящее из рождающихся и аннигилирующих частиц, увеличивает интенсивность сильного и слабого взаимодействия. Это означает, что когда мы исследуем эти взаимодействия на более близких расстояниях, мы проникаем глубже в кипящее облако квантовых флуктуации, и, следовательно, увеличение интенсивности ощущается менее заметно. Таким образом, интенсивность этих видов взаимодействия уменьшается при уменьшении расстояния, на котором мы их исследуем.

Джорджи, Куинн и Вайнберг использовали эти идеи и довели их до замечательного финала. Они показали, что если аккуратно учесть влияние всех этих квантовых флуктуации, то мы увидим, что интенсивности всех трех негравитационных взаимодействий станут сближаться. Хотя интенсивности этих трех видов взаимодействий очень сильно различаются на масштабах расстояний, доступных современной технике, согласно выводам Джорджи, Куинн и Вайнберга, это различие связано с различным влиянием, которое оказывает на них «туман» квантовых флуктуации. Их расчеты показали, что если проникнуть сквозь этот туман и исследовать взаимодействия не в обычных для нас масштабах, а на расстояниях, составляющих примерно одну сотую от миллиардной миллиардной миллиардной (10-29) доли сантиметра (приблизительно в десять тысяч раз превышающем планковскую длину), интенсивности всех трех негравитационных взаимодействий окажутся одинаковыми.

Высокие энергии, которые исследуются на таких малых расстояниях, значительно превышают те, с которыми мы обычно имеем дело, однако такие энергии были характерными для бурной и раскаленной Вселенной в момент, когда ее возраст составлял примерно одну тысячную от одной триллионной триллионной триллионной (10-39) доли секунды, а ее температура, как упоминалось выше — около 1028 К. Эти теоретические работы показали, что примерно так же, как набор самых различных ингредиентов — кусков металла, дерева, горных пород, минералов и т. п. — сплавляется в единое целое и образует однородную, гомогенную плазму при нагреве до достаточно высокой температуры, сильное, слабое и электромагнитное взаимодействия при такой огромной температуре сливаются в одно величественное взаимодействие. Схематически это показано на рис. 7.1 6).

Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - pic_48.jpg

Рис. 7.1. Интенсивность трех негравитационных взаимодействий при уменьшении расстояния или (что эквивалентно) при увеличении энергии.

Хотя у нас нет устройств, с помощью которых можно было бы производить измерения на столь малых расстояниях или воспроизводить столь высокие температуры, за время, прошедшее с 1974 г., экспериментаторам удалось существенно уточнить значения интенсивности трех негравитационных взаимодействий в обычных условиях. Эти данные, являющиеся начальными точками на трех кривых изменения интенсивности взаимодействий, показанных на рис. 7.1, представляют собой исходные данные для квантово-механических расчетов, выполненных Джорджи, Куинн и Вайнбергом. В 1991 г. Уго Амальди из ЦЕРНа, Вим де Боер и Герман Фюрстенау из университета Карлсруэ в Германии пересчитали результаты Джорджи, Куинн и Вайнберга с использованием новых экспериментальных данных и продемонстрировали два замечательных факта. Во-первых, интенсивность трех негравитационных взаимодействий почти (но не абсолютно) одинакова в масштабе малых расстояний (соответственно, высоких энергий и высоких температур), как показано на рис. 7.2.

Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - pic_49.jpg

Рис. 7.2. Уточнение расчета интенсивностей взаимодействий показало, что без суперсимметрии они очень близки, но не совпадают.

Во-вторых, это незначительное, но несомненное различие в интенсивности исчезает при включении суперсимметрии. Причина состоит в том, что новые частицы-суперпартнеры, существования которых требует суперсимметрия, дают дополнительные квантовые флуктуации достаточной величины, чтобы интенсивности взаимодействий стали одинаковыми.

Для большинства физиков чрезвычайно трудно поверить в то, что природа могла выбрать взаимодействия таким образом, чтобы на микроскопическом уровне они были почти, но не в точности равны. Это все равно, как если бы вы собирали головоломку и увидели, что последний фрагмент имеет немного не ту форму, которая позволила бы ему занять последнее остающееся свободным место. Суперсимметрия искусно изменяет форму этого фрагмента, и все части головоломки встают на свои места.

Другой аспект этих последних достижений связан с тем, что они дают возможный ответ на вопрос, почему до сих пор не открыта ни одна частица-суперпартнер. Расчеты, подтвердившие равенство интенсивности взаимодействий, а также ряд других исследований, выполненных физиками, показали, что частицы-суперпартнеры должны быть намного тяжелее, чем все открытые до сих пор частицы. Хотя точный прогноз дать пока невозможно, проведенные исследования показывают, что частицы-суперпартнеры должны быть как минимум в тысячу раз тяжелее протона. Это объясняет, почему такие частицы до сих пор не обнаружены: даже самые современные ускорители не способны развивать такие энергии. В главе 9 мы вернемся к вопросу о перспективах экспериментальной проверки того, является ли суперсимметрия реальным свойством нашего мира.

Конечно, приведенные доводы в пользу того, чтобы принять суперсимметрию или, по крайней мере, не отвергать такой возможности, не являются неоспоримыми. Мы описали, как суперсимметрия придает нашим теориям наиболее симметричный вид, но вы можете возразить, что мироздание, возможно, вовсе не стремится принять наиболее симметричную форму, достижимую с математической точки зрения. Мы обратили ваше внимание на важный технический момент, состоящий в том, что суперсимметрия избавляет нас от необходимости детальной подгонки параметров стандартной модели для преодоления ряда тонких проблем в квантовой теории, но вы можете возразить, что истинная теория, описывающая явления природы, вполне может балансировать на тонкой грани между непротиворечивостью и саморазрушением. Мы показали, что на ничтожно малых расстояниях суперсимметрия изменяет интенсивность трех негравитационных взаимодействий в точности так, чтобы они могли слиться в одно великое объединенное взаимодействие, но вы, опять же, можете возразить, что в устройстве мироздания нет ничего, что диктовало бы необходимость совпадения интенсивности этих взаимодействий на микроскопическом масштабе. Наконец, вы можете предположить, что частицы-суперпартнеры до сих пор не обнаружены просто потому, что наша Вселенная не является суперсимметричной и, следовательно, частицы-суперпартнеры не существуют.

Никто не может опровергнуть ни одно из этих возражений. Однако доводы, говорящие в пользу суперсимметрии, необычайно усиливаются, если мы рассмотрим ее роль в теории струн.

Суперсимметрия в теории струн

Первоначальный вариант теории струн, начало которой было положено работой Венециано в конце 1960-х гг., содержал все виды симметрии, которые обсуждались в первых пунктах этой главы, но не включал суперсимметрию (которая в то время еще не была открыта). Эта первая теория, базировавшаяся на концепции струн, называлась теорией бозонных струн. Слово бозонная указывает на то, что все моды колебаний бозонной струны обладали целочисленным спином: в этой теории не было фермионных мод, т. е. мод, спин которых отличался бы от целого числа на половину единицы. Это приводило к двум проблемам.