Однако сразу же возникает ряд вопросов. Во-первых, почему теория струн требует именно девяти пространственных измерений для того, чтобы избежать бессмысленных значений вероятности? Это тот вопрос, на который, вероятно, труднее всего ответить без привлечения математического формализма теории струн. Прямой расчет с использованием аппарата теории струн приводит к этому результату, но никто не может дать интуитивного, не загроможденного техническими деталями объяснения, почему так происходит. Эрнест Резерфорд однажды сказал, что в действительности, если вы не можете объяснить результат на простом, не отягощенном специальными терминами языке, это значит, что вы не понимаете его по-настоящему. Слова Резерфорда не говорят, что ваш результат неверен, они говорят, что вы не полностью понимаете его происхождение, значение или следствия. Наверное, это справедливо по отношению к дополнительным измерениям в теории струн. (Воспользуемся возможностью упомянуть в скобках о центральном положении второй революции в теории суперструн, которую мы будем обсуждать в главе 12. Расчеты, лежащие в основе заключения о том, что имеется десять пространственно-временных измерений — девять пространственных и одно временное, оказались приближенными. В середине 1990-х гг. Виттен, основываясь на своих догадках и на более ранних работах Майкла Даффа из Техасского университета, а также Криса Халла и Пола Таунсенда из Кембриджского университета, смог привести убедительные свидетельства того, что в приближенных расчетах на самом деле было пропущено одно пространственное измерение. Теория струн, как он показал к большому удивлению большинства специалистов, работающих в этой области, на самом деле требует десяти пространственных измерений и одного временного, — т. е. в сумме одиннадцати измерений. Вплоть до главы 12 мы будем игнорировать этот важный результат, поскольку он не имеет прямого отношения к вопросам, которые мы собираемся рассматривать.)
Во-вторых, если уравнения теории струн (или, точнее, приближенные уравнения, которые мы будем обсуждать до главы 12) показывают, что Вселенная имеет девять пространственных измерений и одно временное, почему три пространственных измерения (и одно временное) являются развернутыми и протяженными, а все остальные — маленькими и свернутыми? Почему все они не являются развернутыми, или почему все они не являются свернутыми, почему не реализовался какой-то другой промежуточный вариант? В настоящее время никто не знает ответа на этот вопрос. Если теория струн верна, рано или поздно мы узнаем ответ, но пока наше понимание этой теории не позволяет его получить. Сказанное не значит, что никто не отваживался ответить на этот вопрос. Например, встав на точку зрения космологии, можно предположить, что вначале все измерения находились в туго свернутом состоянии, а затем, в ходе Большого взрыва, три пространственных измерения и одно временное развернулись до своего современного состояния, тогда как остальные пространственные измерения остались малыми. Предварительные соображения о том, почему развернулись только три пространственных измерения, будут рассмотрены в главе 14, но, честно говоря, они пока находятся в стадии разработки. Ниже мы будем предполагать, что все пространственные измерения, кроме трех, находятся в свернутом состоянии, в соответствии с тем, что мы наблюдаем в окружающем мире. Одна из основных задач современного этапа исследований состоит в том, чтобы показать, что это предположение следует из самой теории.
В-третьих, если требуется несколько дополнительных измерений, не может ли быть так, что наряду с пространственными будут и дополнительные временные измерения? Если вы поразмышляете об этом с минуту, то почувствуете, что это поистине странная возможность. У нас есть внутреннее интуитивное представление о том, как выглядит вселенная, имеющая несколько пространственных измерений, поскольку мы живем в мире, в котором постоянно сталкиваемся с несколькими, а именно с тремя измерениями. Но как выглядит вселенная, в которой есть несколько времен? Будет ли одно из них совпадать с тем, к которому мы привыкли, а другие будут чем-то «иным»?
Ситуация станет еще более загадочной, если вы подумаете о свернутых временных измерениях. Например, если крошечный муравей перемещается вдоль дополнительного пространственного измерения, свернутого наподобие круга, то, завершив очередной круг, он будет снова и снова оказываться в одном и том же месте. В этом мало удивительного, поскольку мы привыкли, что можем, если захотим, возвращаться в одно и то же место в пространстве столько раз, сколько нам нужно. Но если свернутое измерение является временным, перемещение вдоль него будет означать, что спустя какой-то промежуток мы будем оказываться в предыдущем моменте времени. Это, конечно, далеко выходит за пределы нашего повседневного опыта. Время в привычном для нас понимании — это измерение, в котором мы можем двигаться только в одном направлении с абсолютной неизбежностью. Мы никогда не можем вернуться в то мгновение, которое уже прошло. Конечно, свернутые временные измерения могут иметь характеристики, отличающиеся от тех, которые свойственны нашему обычному времени, простирающемуся из прошлого, с момента рождения Вселенной, к настоящему периоду. Однако в противоположность дополнительным пространственным измерениям, эти новые и доселе неизвестные временные измерения, очевидно, могут потребовать более значительной перестройки нашей интуиции. Некоторые теоретики исследуют возможность включения в теорию струн дополнительных временных измерений, но на сегодняшний день ситуация еще далека от определенности. В нашем обсуждении теории струн мы будем придерживаться более «традиционного» подхода, в котором все свернутые измерения являются пространственными. Тем не менее, в будущем интригующая возможность новых временных измерений вполне может сыграть свою роль.
Годы исследований, отсчет которых идет с первой статьи Калуцы, показали, что хотя размеры всех дополнительных измерений, предлагаемых физиками, должны быть слишком малы, чтобы мы могли наблюдать их непосредственно или с помощью имеющегося оборудования, эти измерения оказывают важное косвенное влияние на наблюдаемые физические явления. В теории струн эта связь между свойствами пространства на микроскопическом уровне и наблюдаемыми физическими явлениями видна особенно отчетливо.
Чтобы понять это, вспомним, что массы и заряды частиц определяются возможными модами резонансных колебаний струн. Представьте себе крошечную струну, которая движется и колеблется, и вы поймете, что моды резонансных колебаний подвержены влиянию со стороны окружающего пространства. Подумайте, например, о морских волнах. На бескрайних просторах океана отдельная изолированная волна может иметь любую форму и двигаться в любом направлении. Это очень похоже на колебания струны, движущейся по развернутым протяженным пространственным измерениям. Как указывалось в главе 6, такая струна в любой момент времени может колебаться в любом из протяженных измерений. Но когда морская волна проходит через более узкий участок, на форму волны будут влиять, например, глубина моря, расположение и форма скал, форма канала, по которому движется вода и т. п. Можно также представить себе органную трубу или валторну. Звук, который может воспроизводить каждый из этих инструментов, непосредственно зависит от резонансной моды колебаний воздуха, проходящего через них, а эта мода определяется формой и размерами каналов в инструменте, через которые движется поток воздуха. Свернутые пространственные измерения оказывают аналогичное влияние на возможные моды резонансных колебаний струны. Поскольку крошечные струны колеблются во всех пространственных измерениях, форма, в которую свернуты эти дополнительные пространственные измерения, а также форма их взаимного переплетения, сильно влияют и строго ограничивают возможные моды резонансных колебаний. Эти моды, в значительной степени определяемые геометрией дополнительных измерений, формируют набор свойств возможных частиц, наблюдаемых в привычных протяженных измерениях. Это означает, что геометрия дополнительных измерений определяет фундаментальные физические свойства, такие как массы частиц и заряды, которые мы наблюдаем в нашем обычном трехмерном пространстве.