Нейротрансмиттеры могут воздействовать на постсинаптическую клетку в качестве тормозящих или возбуждающих сигналов, гиперполяризуя или деполяризуя ее мембрану. Одна и та же молекула может функционировать и как тормозящий агент (ингибитор), и как возбудитель. Это происходит потому, что существует небольшое количество нейротрансмиттеров, но огромное множество их рецепторов на различных типах клеток. К примеру, ацетилхолин может действовать как возбудитель, когда он связывается с одним типом рецепторов, и как ингибитор, когда он связан с другим видом, даже если оба типа рецепторов находятся в той же самой клетке.

Здесь описаны некоторые из хорошо изученных нейротрансмиттеров. Другие гипостазируются наряду с биоактивными пептидами, такими как соединение Р или нейропептид Y.

Ацетилхолин (АХ) действует главным образом как возбуждающий нейрон. Он синтезируется холинацетилтрансферазой. АХ используется моторными нейронами всех позвоночных. Его также обнаруживают в клетках базальных ганглий. (Эти клетки обычно гибнут при болезни Альцгеймера.) АХ крайне важен для формирования памяти. Он также используется сенсорными нейронами членистоногих.

Биоактивные амины включают в себя подгруппу, называемую катехоламинами. Все катехоламины синтезируются по аналогичной цепочке, которая начинается с тирозина. К катехоламинам относится допамин — нейротрансмиттер, который проявляет себя на множестве различных участков мозга. Слишком большое количество допамина связывают с таким тяжелым биоповеденческим расстройством, как шизофрения. Лекарства, которые блокируют биологическую доступность допамина — другими словами, функциональное количество допамина на рецепторном уровне, — снимают симптомы шизофрении. Фактически, последние 40 лет было известно, что способность лекарства блокировать в пробирке рецепторы допамина в очень высокой степени коррелирует со способностью этого препарата снимать симптомы шизофрении.

Гибель допаминергических нейронов в черном веществе (среднего мозга) приводит к болезни Паркинсона, серьезному расстройству двигательной способности. Допамин — это также нейротрансмиттер, который является в значительной степени медиатором чувства удовольствия, главным образом посредством активизации прилежащего ядра.

Норэпинефрин — важный нейротрансмиттер, который обнаруживают в голубом пятне и в постганглиевых нейронах симпатической нервной системы. Первая структура, по-видимому, действует подобно сигнализатору в случае общей опасности. События в среде, которые оцениваются как потенциально опасные, вызывают активизацию норэпинефриновых нейронов (также известных как норадренергические нейроны) в прилежащем ядре. Роль симпатической нервной системы в подготовке высших животных к «нападению или бегству» хорошо известна. У млекопитающих эпинефрин, как правило, не обнаруживают в качестве нейротрансмиттера; он обычно играет более периферийную роль. Однако он используется мозговым веществом надпочечников и может играть другие роли, которые пока недостаточно хорошо поняты.

Серотонин (5-гидрокситриптамин или 5ГТ) — это катехоламин подкласса индоламинов. Он синтезируется из триптофана, аминокислоты, которая обычно присутствует в типовой диете. Серотонин обнаруживают в избытке в ряде участков мозга, включая ядра шва у позвоночных. Это место действия антидепрессантов и галлюциногенов. Кроме того, он, по-видимому, играет определенную роль в физиологии сна, сексуального поведения и насыщения или ощущения полноты, связанного с едой. Также важна та роль, которую он играет в социальных иерархиях.

Гистамин, в дополнение к своей роли в систематической реакции на стресс, является нейротрансмиттером беспозвоночных, обнаруживаемом у членистоногих.

В целом, меньше известно об аминокислотных трансмиттерах. К ним относится глутамин, являющийся важным возбуждающим нейротрансмиттером у позвоночных и нейромышечным трансмиттером у членистоногих. Глицин — тормозящий трансмиттер в спинном мозге.

ГАМК (гамма-аминомасляная кислота) — один из основных тормозящих нейротрансмиттеров в головном мозге, который охватывает около 50 % нейронов мозга. Она синтезируется из глутамата. Действие комплекса ГАМК важно при эффектах противотревожных лекарств, а также при эффектах алкоголя.

Нейропептиды — это более крупные молекулы, которые синтезируются в клеточном теле и транспортируются к участкам высвобождения. Они также действуют в качестве нейротрансмиттеров, несмотря на то что зачастую в сотни раз больше нейротрансмиттеров. Они синтезируются из предшествующих (первичных) полипротеинов. Идентифицировано более 50 нейроактивных пептидов. Многие были идентифицированы как гормоны или желудочно-кишечные пептиды до их идентификации в качестве нейротрансмиттеров. Имеют важное значение для передачи болевых ощущений. Возможно, наиболее интересна цепочка проопиоидмеланокортина (ПОМК), которая включает энкефалин и эндорфины, участвующие во внутренних системах вознаграждения и в снятии боли. К ним также относится адренокортотрофический гормон, играющий важную роль в нейрогуморальной реакции на общий стресс.

Когда пептиды и малые молекулы-трансмиттеры синтезируются и высвобождаются одним и тем же нейроном, их называют котрансмиттерами. Кроме того, котрансмиттерами могут быть и малые молекулы. Цель котрансмиссии (совместной передачи) — вызвать более сложную постсинаптическую реакцию.

Существует по меньшей мере три механизма удаления нейротрансмиттеров из синаптической щели. Часть нейротрансмиттеров может удаляться путем простой диффузии. Однако быстрейшим средством прекращения синаптического сигнала в случае большинства малых трансмиттеров (кроме ацетилхолина) является обладающий высоким сродством обратный захват малых молекул-трансмиттеров в пресинаптический терминал и глиальные клетки. Медиатором обратного захвата являются транспортные белки.

Ферментативное разложение представляет собой третий механизм удаления. Ацетилхолин расщепляется ацетилхолинэстеразой. Моноаминоксидаза (МАО) расщепляет допамин и серотонин. Ингибиторы МАО — это терапевтически важные пептиды, которые расщепляются путем протеолиза пептидазами. Не существует механизма обратного захвата для пептидов, поэтому их эффекты, как правило, отличаются большей длительностью, чем эффекты малых молекул-трансмиттеров.

Глоссарий.

Homo antecessor — выделен по чертам средней части лица. Предок как Homo sapiens, так и Homo Heidelbergensis. Лицо имело современную морфологию: достаточно крупный нос, выраженная надбровная дуга и скошенный лоб. Жил 400 000 лет назад.

Homo erectus— потомок Homo habilis, от которого его отличали более крупный череп и более толстые кости. Сильнее выражены гребень и скулы; брови над глазами очень толстые и выступающие; задняя часть черепа угловата, крупные (по сравнению с черепной коробкой) челюсти и лицо, однако щеки и зубы уменьшены в размерах по сравнению с австралопитеками. Менее 1 миллиона лет назад Homo erectus мигрировал из Африки в Евразию.

Homo habilis— ветвь австралопитеков, изготовлявшая орудия из камня 2,5–2 миллиона лет назад. Зародились в западной и восточной Африке. Отличались от других видов более мелкими костями лица и зубами. Строение скелета напоминало примитивных австралопитеков.

Homo neanderthalensis— жил 120 000-30 000 лет назад. Мозг крупнее, чем у современных Homo sapiens, лоб более плоский, череп шире, с узкой передней и широкой задней частью. Невысоки ростом, но широкоплечи и сильны. Крупная голова, широкий нос, а скулы скошены назад. Крупные передние зубы, употреблявшиеся для разгрызания пищи, изготовления инструментов или обработки кож.

Hamo sapiens sapiens— подвид рода Homo, соответствующий по классификации современному человеку.

НОХ-гены (HOX genes & НОМ genes) — группа регуляторных генов, управляющих аспектами дифференцировки организма у эмбрионов.